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EUROPEAN SEMINAR ON NEURAL COMPUTING

Introduction * Associative Memories and Representation of Knowl-
edge as Internal States in Distributed Systems

This informative and focused conference dealing * Neurocomputing Applications - A United States Per-
with a rapidly developing area was held in London, UK, spective
over a 2-day period, February 8 and 9, 1988., The meet-
ing was organized by IBC Technical Services Ltd., Lon- o Parallel Architectures for Neurocomputers

don, UK, with the scientific program arranged by leading o Combinatorial Optimization on a Boltzmann Machine
UK scientists in the area of neural computing.

There were 122 delegates to this conference, the ma- * Neural Networks: A European Perspective
jority from the UK. However, nine West European coun- o Adaptation in Open Systems: Learning and Evolution
tries were also represented as well as the US and Japan.

* Sixty-five percent of the attendees were from industrial
organizations with the balance from academia. 0 Trends in Neural Computing

Neural computing (based on the computational Detailed accounts of most of the abovc presentations
structure of the brain) is a revolutionary area providing are given in the following report.
major breakthroughs in commercial pattern recognition
and learning applications. The primary application areas Neural Systems and Models
are: image processing, speech recognition and synthesis,
control -of robot motion, and authentication systems. Neural systems and models was discussed by D. Will-

An international group of expert speakers presented shaw (Center for Cognitive Science, University of Edn-

this 2-day seminar on the application areas, the connec- burgh, UK), who said that artificial neural computing

tionist models underlying the applications, and the hard- systems, based on the properties of real nervous systems,

ware and software systems of neural computing. The have a radically different structure and mode of action

strengths, weaknesses and appropriate domain of all as- from convcntional computers. The prime attraction of

pects of this technology were examined in detail, these artificial systems, he said, lies in the hope that thcv

Neural computing technologies subdivide into con- mayshare some of the remarkable processingcapahilities
nectionist models and parallel neural computers.., Con- of real brains, by far the most sophisticated computing dc-

ncctionist models can be further classified into two vices in existence.
groups: associative memory systems and learning sys- Artificial neural networks (called neural networks)

tems, each of which was discussed. Massively parallel are highly abstract models of real nervous systems. Since

neural computers are required to achieve the full poten- at least the 1930's, a close relationship has existed be-

tial of connectionist models. These computers execute tween people interested in the design of artificial brains

ncural models much in the same way that traditional com- and those interested in the brain itself. Among other

puters perform number crunching tasks. During this fields, those of mathematical biophysics, cybernetics, and

meeting, a review of the hardware and software require- most recently, connectionism and parallel distributed

ments for neural computers was presented. In addition, processing have embraced both points of view, which

three experts reviewed neural computing developments have profited from advances in related fields such as sym-
xhich are being commercialized in the US, Europe and bolic logic, automata theory, information theory and ho-

Japan along with the progress being made in their respec- lography.
tive markets. Willshaw said that it was in the late 19th century that

The format, and titles of the sessions, of the scientific the neui ,s first established as the basic unit of the

program was as follows: nervous o,\c.r Ever since then, the idea has been de-
e Neural Systems and Models veloped th, - e synapse-the structure through which

individual nerve cells intercommunicate - is the site of
• Connectionist Models: Background and Emergent learning and memory. One of the best known proposals

Properties is due to Hebb, who suggested that the pattern of neural

" Programing Languages for Neural Computers activity is the physiological basis of learning; and that the
condition for strengthening of an individual synapse is the
simultaneous activity in the presynaptic and postsynaptic

Dr, Zomzely-Neurath is the Liaison Scientist for Biochemistry, Neu- cells.

rosciences, and Molecular Biology in Europe and the Middle East
for the Office of Naval Research's London Branch Office. She is on The most seductive feature of a neural network for
leave until July 1989 from her position as Director of Research, the many people, Willshaw said, is that it may be able to
Queen's Medical Center, Honolulu, Hawaii, and Professor of Bio- learn - and to learn by experience rather than by explicit
chemistry, University of Hawa! S"n il nf Madicin,



programing. Most of the learning machines that have Properties of the Nerve Cell
been proposed employ schemes similar in principle to that Until very recently, the idea that synapses are modi-
proposed by Hebb: that is, that the memory resides in the fled according to the local conditions has been based on
connections between the basic elements (hence, "connec- hope rather than fact. It has been extremely difficult to
tionism"), and the strengths of these connections are obtain direct evidence. Recent work, however, has indi-
changed according to the local conditions. A machine cated that a learning rule similar to that proposed by Hebb
based on this principle called the Perceptron, which was may operate. The phenomenon of Long Term Potentia-
designed to learn binary pattern discriminations by ex- tion (LTP) is a long-lasting alteration in the efficacy of sy-
perience, was discussed later in the conference. Willshaw naptic transmission, which was first discovered in the
described the archetypical neural network, of which the mammalian hippocampus. LTP results from rapid stimu-
Perceptron is a particular example. lation of the incoming nerve fibers. In most cases, a few

Neural Networks impulses delivered at near-maximal rate is most effective.
However, if the postsynaptic membrane is simultaneous-

A neural network is a highly interconnected set of ly artificially depolarized, single stimuli arc sufficient.
simple processing units which interact by means of the sig- Here, according to Willshaw, a neo-Hebbian rule seems
nals passing between. At any moment of time each unit is to be operating- the condition for synaptic modification
at a certain level of activity which is determined from the is presynaptic activity together with postsynaptic depolar-
levels of activity of the units which transmit signals to it, ization, rather than postsynaptic activity as proposed by
weighted by the strengths of the appropriate interconnec- Hebb.
tions. In general terms, the task of the network is to learn
a mapping from inputs to outputs; that is, each possible Neural Connectivity
input, represented as a pattern of activity over the units The area of nervous system research from which neu-
designated as input units, must elicit a certain pattern of ral networkers may learn most concerns the nature of neu-
activity over the designated output units. Learning the re- ral connectivity. In neural networks the units are
quired mapping involves gradually changing the weights generally arranged in completely connected small groups,
of the interconnections, and in most cases, this is an iter- each of which is interconnected to give a number of layers
ative procedure involving error-correction. Each input is fairly arbitrarily arranged. Much of the wiring (for
presented in turn; the resulting output is compared with example, the wiring required for execution of the back-
the desired output and the weights are altered in order to propagation learning algorithm) is not given explicitly, ac-
make the correct output more likely to occur on sub- cordingtoWillshaw. Inthebraintherearemanydifferent
sequent presentation of this input. Much of the recent in- types of wiring patterns. In most regions of the brain the
terest in programing, accordingtoWillshaw, hasbeen due nerve cells are not completely interconnected and the
to the development of novel learning procedures. neural wiring patterns vary significantly from region to re-

He said that from both computational and biological gion. The connections in many sensory systems are so ar-
points of view, systems of this type have their advantages, ranged as to produce topographic projections. In all
From the information processing perspective, the attrac- vertebrates, for example, there is a map of the eye through
tion is that the relationships between entities are stored the optic pathway on to the primary visual center of the
directly. Associative memory is represented directly and brain. In the hippocampus the cells are arranged in spe-
in parallel in the hardware. The distributed nature of the cific layers and project onto one another and back onto
representation implies that memories should be resistant themselves in a stereotyped-but as yet poorly under-
to local damage. Furthermore, the system would be able stood - fashion. In mammals, perhaps the most exquisite
to function with incomplete or inaccurate inputs, yielding neuronal circuitry is that found in the cerebellum.
the properties of content-addressability and generaliza- The cerebellum, situated behind the cerebral cor-
tion. From the neurophysiological angle, distributed as- tices, is thought to be involved in the learning of the con-
sociative memories have always held out the promise of a trol of movement. It contains five major types of nerve
solution to the problems of equipotentiality emphasized cells. It receives two distinct types of input - through the
by Lashley and to that of stimulus generalization (Hebb). mossy fibers and through the climbing fibers. The mossy

fibers contact the granule cells of the cerebellum, whose
Neural Networks and the Brain axons, the parallel fibers, make contact with the Purkinje

cells, the single class of output cells. There may be as
Willshaw said that three "brain-like" properties of many as 100,000 contacts to each Purkinje cell. The

neural networks can be identified: (1) the individual units climbing fibers contact the Purkinje cells directly. Ac-
(the nerve cells) are simple processing units, (2) learning cording to the theories of Marr and Albus, the climbing
involves the modification of strengths of the interconnec- fibers relay the direct instructions to the Purkinje cells to
tions according to locally available information, and (3) carry out elemental movements; the mossy fibers relay the
the uits are highly, if not completely, interconnected, giv- "context" in which this movement is carried out. Willshaw
ing a highly parallel architecture. said that it haF been proposed that r.o.ifications of the
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parallel fiber/Purkinje cell synapses according to the present time, according to Recce, we are experiencing a

Hebb rule makes possible the learning of the associations significant move back to the neural network approach. In
between each context with the appropriate instruction, part this is due to the increased understanding of brain
The effect is that subsequent presentation of each conte xt function, and in part due to the increased availability of
is sufficient to evoke the correct Purkinje cell response. computing power for the evaluation of models. The in-
In this way, sequences of movements can be learned to be creased level of interest is largely due to the recent suc-
carried out automatically. Willshaw then presented cess that this level has experienced and the approaching
slides and discussed a real neural network, the cerebel- horizon of applications (see Sejnowski and Rosenberg,
lum, in detail andthe role assigned to each type of cell ac- 1986; Rumelhart et al., 1986; Hopfield, 1982; Hopfield,
cording to the Marr-Albus theory. 1986; and Grossberg, 1986).

Another fact stimulating research in this area, Recce
Connectionist Models: Background and said, is disappointment with the performance of the cur-
Emergent Properties rent computer technology. Current computers are hav-

ing a difficult time attempting to solve pattern recognitionA talk which provided an introduction to current and learning problems. Even when computers come

connectionist research areas (examined in detail in later

talks at this conference) was given by M. Recce (Depart- somewhat close to solving any of these problems, the pr3-

ment of Computer Science, University College, London, cess generally requires an enormous number of compu-

UK). He said that the goal of neural computers is based th top.
The top-down approach of main-stream artificial in-

on an attempt to mimic the brain's function by emulating telligence and the bottom-up approach of neural net-
its structure. However, it is the abstraction of these neu- works also differ in the nearest term goals. One of the
roscience concepts into the field of connectionism which problems not immediately addressed by artificial intel-
has provided the progress in designing and programing ligence research then is low-level pattern recognition and
neural computers. distributed decision making. These are both ncar-term

The framework was established in the 1960's - prior goals of the neural network approach. In his talk, Recce
to the current wave of interest in connectionism - by the discussed the overall characteristics of neural network
development of perceptron models. The primary con- models as well as the range of abilities which the networks
tribution during this period was a simple perceptron are trying to capture. He spoke about three models with
learning paradigm. Recce discussed this paradigm and areaing ompt.
its limitations during his presentation, increasing complexity.

Current research in connectionism, he said, sub- Historical Perspective
divides into two areas, namely, associative memories and
learning systems. With associative memories, informa- Recce said that the field of neural networks really got
tion can be retrieved based on the content of the memory started in 1943 when McCulloch and Pitts (1943) showed
(auto-associator) or a relationship between remembered that networks of neuronlike elements were general com-
pieces of information (pair-associator). With learning puting devices. That is to say that a suitably constructed
systems, data is presented according to a set of rules, and network could implement any computational algorithm.
the task is for the system to extract the underlying pat- The largest missing piece was the method of training, or
terns. storing information in these devices. However, Hebb

Recce said that the idea that increased under- (1949) described a biologically plausible means for learn-
standing of the brain would lead to the design of better ing. He suggested that synapses were the site of changes
computer systems is not new. The theory of computation, during adaptation, and that frequently active connections
and the first electronic computers were developed during should have increased chances for being active again.
the same period that the neuronal model of brain func- This is accomplished by increasing the synaptic strength
tion was being accepted. The current model of computa- or weight. This learning rule is still the basis of many con-
tion was not in place, and better, smarter architectures nectionist models.
for "electronic brains" were under investigation. The In 1957 Rosenblatt (1962) invented a simple class of
early research into how to build these computers, which learning network which he called the "perceptron." Per-
today might be called main-stream artificial intelligence, ceptrons are composed of a special class of McCulloch
was principally through examining network models of and Pitts neuron which is called a threshold logic unit
simple neurons. (TLU). The TLU has a number of inputs, each associ-

Recce said that during the late 1960's the main stream ated with a weight that plays a role analogous to the sy-
of artificial intelligence research moved away from the naptic strength of inputs to a neuron. The total input to
neural network approach towards a top-down modeling the TLU is an n-dimensional vector, a pattern of activity
of human mental processes. The motivation was that the on its individual input lines. Each component of the input
brain is just one way of making a thinking machine, and vector is multiplied by the weight associated with that
not the optimal way for electronic technology. At the input line and all of these products are summed. The unit

gives an output of "1" if this sum exceeds its threshold.
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Otherwise it gives an output of"0". The interest in Rosen- nectedness, which measures if objects in the scene are
blatt's perceptron model arose, Recce said, from the re- connected. In addition, they addressed themselves to the
sult that a single layer of these units could perform pattern potential extensions of the models to multiple layers and
recognition. Rosenblatt's perceptron convergence theo- backward coupling. They indicated that they did not ex-
rem proscribed a procedure and proved that the percep- pect a dramatic increase in the abilities of perceptrons if
tron would converge to the answer, if a suitable set of extended in these directions, and that these extensions
weights exists. The problem was that the perceptron significantly increased the problem of treating systems
would only reach the answer if the network was capable analytically.
by design of solving the problem. Unfortunately, with a Recce said that the book published by Minsley and
single layer model an appropriate set of weights does not Papert called Perceptrons dampened interest in the field.
exist for interesting problems. The attempts to solve this set of problems was then shifted

towards the now mainstream artificial intelligence re-
search, except for a small number of researchers who re-

Recce described the procedure by which this simple mained active in this field.
network can learn. Figure 1 shows a simple black box
which has four inputs and two outputs. Each of the in- Neural Network Characteristics
pats is connected to each of the outputs. The weights are Neural network models, Recce said, are generally
all initially set to zero. The procedure has two phases large, regular structural arrays of computationally simple,
which are repeated several times. During the first phase but nonlinear, processing elements which are intercon-
the inputs and outputs are held at desired values, and a nected. The research in this field has a very experimen-
small amount, 5, is added to all weights which have both tal nature, due to the mathematical complexity of these
active inputs and outputs. During the second phase the parallel nonlinear systems. In general the approach taken
inputs are clamped at the same values and the TLUS. At is to obtain the most guidance possible from analytical
this point the same amount of 5 is subtracted from all methods and then to conduct simulation experiments
weights which have active outputs and inputs. If a weight with software on serial computers or with special-purpose
was correct before this two-phase operation then its hardware. Therefore the richness of variation found in
weight is unchanged, as it was incremented during phase real neuronal networks is reduced to the simplest models
I and decremented during phase 2. In all othcr cases, the which will demonstrate the behavior desired. Even with
value would have changed -and in the correct direc- these simplifications the parameter space containing
tion - as a result of this pass through both phases. Recce possible models is enormous.
said that there were several examples of pattern recogni- Another characteristic of neural networks which
tion learning which this single layer model was found to both increases their complexity and is the key to their
accomplish, computational power is the distributed nature of the in-

formation stored in them. If a new piece of information
-is added to the network, a small change is made over the

0 entire network rather than a single change in one place.
U O According to Recce, this characteristic is usually a result

P U of the rules governing the system, and also gives the sys-
U T tem its robustness or fault tolerance.
T P He said that neural networks are specified by node

u characteristics, net topology, and training or learning

T rules. Within the node definition is a specification of the
variability of the weights. At one extreme some models
restrict these weights to a single bit (Wilshaw, 1981; Gard-

Figure 1. Simple single layer perceptron. ner-Medwin, 1976), while others use real-valued numbers

Throughout the late 1950's and 1960's, he said, there (Rumelhart et al., 1986). Secondly, the response func-
was a significant amount of research done on single-layer tion of the node can be varied. It is usually the step func-
perceptrons, until a theoretical analysis of their limita- tion from 0 to 1 shown by (a) in Figure 2, but some models
tions was published by Minsky and Papert (1969). These more closely model the true neuronal response (Hop-
investigators set out to establish the capabilities of per- field, 1986, and b in Figure 2). Additionally the update
ceptrons, and found significant limitations. In particular, timing of the node varies between models. In most mod-
they found that single-layer perceptrons were generally els synchronous updating of nodes is performed, while
less efficient at solving even the problems which they asynchronous updating is the rule employed by the cen-
could solve than traditional computers. In particular, tral nervous system.
they found that with slightly harder problems, the percep- The network topology varies significantly between
tron required an absurdly large number of units. Two neural network models. In the earlier perceptron mod-
examples are parity, or the number of active bits, and con- els, Recce said, a single layer of units was used. This has
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been extended to multilayer feed-forward networks in type of network is also called a content addressable mem-
which the connections are just between layers of units and ory.
in which the information or analysis flows in one direc- A pair associator which- had learned to associate the
tion, and the correction to the performance flows in the letter "A" with "B", should present "B" on the output if "A"
reverse direction. Recce said that all-to-all connected is presented on the input. Similarly, if a corrupted or par-
networks and randomly connected networks are also fre- tial "A" is presented, then a complete "B" should appear.
quently studied. According to Recce, a pair-associator is significantly

more valuable a device because knowledge can be repre-
Il  sented by objects with weighted associations. Also, a

pair-associator with feedback of output back to input can
easily be used to construct a finite-state machine.

A supervised learning system, after repeated presen-
0 tation of "A" and"B", would be able to change the repre-

(a) (b) sentation of the input data. It could, for example, select
one output line after training. The single-layer percep-

Figure 2. (a) Step function response, (b) Sigmoid response. tron model discussed above is an example of supervised

The largest variation in models is in the training or learning. A key point here, is that the correct answer is
learning rules. These rules specify an initial set of weights used to improve performance.

and indicate how weights should be adapted during use A network in the last category of unsupervised learn-

to improve performance. Recce said that it is important ing would be able, after successive presentation of input
to stress that only the weights change in the great majority letters, to change the representation of the input to the

of these models. The Hebb rule mentioned above is used output. The difference is that it performs this task with-

by several current models and in a modified form is used out the benefit of presentation of the correct answer to

by the Hopfield model (Hopfield, 1982), which was dis- the output units.
cussed in a later talk at this meeting. Rosenblatt's learn- The Hopfield Model
ing rule has been extended in various ways for the
multilayer networks. One extension, called the The model initially put forward by Hopfield in 1982

Boltzmann Machine (Ackley et al., 1985), was discussed is an auto-associative memory device. It has multibit

in detail in another talk at this meeting. Besides the re- weights, and units with a step function response from

quired components of neural network models, many minus one to plus one. This response, which is thresh-
models include other characteristics, according to Recce. olded at zero, is calculated by all of the units simulta-
An example of this in the Hopfield model is symmetric in- neously. The network is 100 percent connected, and
teraction between units. This means that if a unit has a weights between units are symmetric. The storage rule
weight of"w" to another unit, then the other unit must have used by the Hopfield model is a modified Hebb rule. It

a reciprocal connection with identical weight. In another states that the weights should be increased by one if either

example (Rumelhart et al., 1985) with a multilayer net- both units are active (outputting a 1) or both units are in-
work, units within a layer have negative weights coupling active (outputting a -1). In the cases of one active and the

them, but have positive weights to the next layer. other inactive the weight is decremented by 1. The net-
work is initialized with all weights set to zero.

Taxonomy of Goals After the patterns have been stored in the network

The tasks set for neural network models span several the recall procedure has two steps. First, an initial test

fields, but the underlying capabilities sought in these pattern is presented to the network and all of the units are

models fall roughly into four categories: auto-associators held momentarily at this setting. Then each unit calcu-
which relate stored patterns to themselves; pair-associ- lates the weighted sum of its inputs, and if this is positive,
ators which relate patterns to a coupled pattern; super- outputs a 1; if this is negative, it outputs a -1. Next, each

vised learning in which there is repeated correction by a unit recalulates the weighted sum with the new set of ac-

teacher of errors made in the system; and unsupervised tive inputs, and recalculates its output. After this cycle is

learning in which the system itself must cluster the input repeated a few times, the states stabilize and the output
patterns. is read as the state of the units.

In order to clarify these categories, Recce considered According to Recce, this can perform well as an auto-

systems working with the letters "A" and "B". With an associator if a few conditions are met. The first condition

auto-associating system which has stored these two let- is that the patterns stored must be different by a sufficient-
ters, we should expect to be able to present either letter, ly large number of bits. This number is called the Hamm-

and it should be recognized and the states should not ing distance between the two patterns. The second
change. In addition, if we present a corrupted or partial condition is that no more than a maximum of 0.15 times
letter that the system had learned we would expect the N patterns can be stored in the network, where N is the

system to respond with the completed correct letter. This number of units.
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The Boltzmann Machine the single-layer perceptron could not solve can be solved
This is an example of a supervised learning network. by this method. On the other hand, the number of units -

This algorithm, Recce said, is one of a few algorithms and the configuration - required to achieve a solution is
which have extended the single-layer perceptron learning not well understood, and the time required for testing
algorithm to multiple layers. The reason for presenting each system is significant.
the Boltzmann Machine rather than the more powerful According to Recce, neural network models are de-
"back-propogation of errors" algorithm is that this algo- signed to capture aspects of pattern recgnition, learning
rithm is a simple extension of the Hopfield model. and fault tolerance inherent in real networks of nerve

The supervised learning network is constructed in cells. These goals are far from being reached by current
multiple layers such that there is one set of units in con- mainstream artificial intelligence research. Neural net-
tact with input information, one set of units in contact with works seem a promising alternative, especially in light of
output information, and a third set of units which make of the current progress in this field, VLSI technology, and
no outside contacts. This third set of units have been neuroscience. Recce said that in balance, the success
called "hidden units." With this model, rather than expli- seen so far should be tempered with the fact that the true
citly storing information as would occur with an auto-as- understanding of the behavior of these models is quite far
sociator, input patterns are presented and outputs are off, but successful application of this technology to real
trained to respond correctly. problems has already begun.

The training process has two phases, much like the
phases of the perceptron learning algorithm, but with one Programing Languages for
significant change. This change is designed to allow train- Neurocomputers
ing of the hidden units. If the network is left after pres-
entation of the input values, it will settle into a minimum Programing languages for neural computers still re-
just as if it were being used to recall stored data. The mains one of the least developed research areas. Histori-
problem is, according to Recce, that this might not be the cally. each novel class of parallel computers is associated
global minimum. In order to convince the system to settle with a corresponding class of high-level programing lan-
into the global minimum a technique called "simulated guage. Neural computer programing languages will de-
annealing" is used. The basic principle of this technique, velop partially through absorption of appropriate
taken from statistical mechanics, is that ifa sufficient ran- concepts from current parallel languages. In his prcscn-
dom element is added to each unit's choice of a state, then tation, P. Treleaven (Department of Computer Science.
the system can escape local minima. In fact. if this ran- University College, London, UK) reviewed the major
domization is allowed to persist for long enough, the sys- classes of parallel programing languages and discussed
tem will reach a state of equilibrium. Within this potential contributions to neural networks. Language
equilibrium state the system will occupy minima in pro- classes presented include Communicating Processes.
portion to their size, so it will spend more time in the glo- Object-Oriented. Data Flow, Logic, and Semantic Net-
bal minimum. Therefore, the simulated annealing work. Treleaven also discussed current proposals for
technique requires setting a degree of randomization, neural network languages such as ANNE, CONE, P3 and
often called the temperature, and a procedure for lower- NIL.
ing this temperature parameter gradually to zero. In the
Boltzmann Machine two phases incorporate this ran- Programing Neural Networks
domization. Over the past 2 years, interest in neural networks has

During phase one, the inputs and outputs are held at surged (Hopfield, 1986; Miller, 1987; Kovaly, 1987). The
the desired value - a collection of l's and O's. The system reason is that neurocomputing seems to represent a fun-
is brought to the equilibrium state at a low non-zero tem- damentally new domain of computation, complcmentary
perature. For the next short period of time the weights to traditional computing. Neural networks are massively
are modified in the following way. For each unit of time parallel networks of primitive processing elements, based
which two units are both active, the weight between them on highly simplified models of the human nervous systcm.
is incremented by 8. During the second phase the inputs exhibiting abilities such as learning, generalization and
are clamped, and the outputs are calculated. The samt: abstraction. Treleaven said that traditional computation
inputs are used. The system is again brought to equili- and neurocomputation may be differentiated as: Symbol
briun1 and for the same short time as before, but now de- Processing - computation is specified as an explicit scrics
crement by & the weights between active units. If the of commands that manipulate symbols whether data or
system was in an equilibrium state and the time was suf- code; Pattern Processing- computation is specified as a
ficiently long then the net result is that the weight should network of primitive neuronlike processing elements that
not have changed. A proof of this can be found in the operate as a dynamical system through adjusting their in-
paper by Ackley et. al. (1985) on Boltzmann Machines. terconnections.
Recce said that the results from this learning procedure Considei able research has been devoted to the de-
are generally quite good. Many of the problems which sign of a new generation of general-purpose parallel com-
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puters and its associated programing languages - the so- is, whether the programing language is for: (1) neural net-
called fifth-generation computer for use in the 1990's. works, (2) semantic networks, or (3) connectionism -
Treleaven said that each proposed design consists of a spanning both neural and semantic networks. For
parallel model of computation, plus a computer architec- programing neural networks, the main capabilities re-
ture and corresponding high-level languages, both embo- quired of a language are to:
dying the computational model. Although these models * Allow the definition of the functionality (execution in-
are superficially different, all are based on programs spe- structions) for each node
cified as an explicit series of commands and thus are * Allow the definition of the inputs and outputs of each
classified as performing symbol processing. node

According to Treleaven, historically each new class
of parallel computers is associated with a corresponding * Allow the association of weights with the inputs
class of high-level programing languages. If the true * Allow the linking of the inputs and outputs of nodes to
potential of the recent advances oi neurocomputing and form a network
neural networks is to be realized, then this new domain of
parallel computers will require a corresponding class of * Provide the capability for controlling the relative tim-

general-purpose, high-level (neural network) program- ing in the functioning of the nodes - for example, svn-

ing languages. Neural computer programing languages, chronous, asynchronous, specified patterns, etc.

according to Treleaven, will develop through absorption * Support interaction with the environment.
of appropriate concepts from current parallel languages. For programing semantic networks the main capa-

Treleaven divided his talk into four main parts: (1) a bilities required of a language are to allow:
clarification of what is meant by "connectionist networks' of the functionality of each (or a group of)
and their relationship to semantic and neural networks; nodes

(2) a review of the major classes of parallel programing

languages such as Procedural, Object-Oriented, Func- o Definition of inputs and outputs of each (or a group
tional and Logic; (3) an overview of Semantic Network of) nodes
languages, which are closely related to neural networks- * The linking (of the inputs and outputs) of nodes to
and (4) current proposals for neural network languages. form a network

Connectionist Models * Properties to be associated with links (for example.

Treleaven defined the terms "connectionism," "se- consistent or inconsistent)

mantle networks." and "neural networks" because, he said, o Dynamic creation and deletion of nodes
there was confusion in the literature regarding these * Dynamic creation and deletion of links.
terms.

"Connectionism" refers to a broad class of massivelI Thus. according to Trelcavcn. for programing the
parallels,Iemscomposedofalarge numbcrofsimple. au- spectrum of connectionist models, a programing lan-
tonomous, and interconnected processing elements. In- guage must form a supcrsct of the mechanisms required
formation is principally stored in terms of the by neural network and semantic nctwork languagcs.
interconnection pattern among elements, and processed High-Level Programing Languages. Table 1 illus-
by means of altering these patterns or modifying the quan- trates the various categories of programing languages and
titv known as the weight associated with each connection. example languages. Treleaven said that in the future any
At one end of the connectionist spectrum is the class of of these categories of languages may become main-
computational models known as semantic networks and stream programing styles, especially when novel parallel
at the other is neural networks. computers sympathetic to their support become available

"Semantic Networks" are basically directed graphs in for use. In addition, several of them could contribute to
which the nodes represent independent entities (i.e., con- neural network languages. Trelcavcn then reviewed the
cepts or objects) and the directional links represent the various categories of programing languages, starting with
relationships between the entities. Computation in se- a discussion of the most dominant, procedural program-
mantic networks usually involves creating new nodes and ing.
changing the interconnections between nodes. Procedural Programing. This programing is based

"Neural Networks" are basically fully interconnected on concepts which are almost taken for granted: a global
networks of nodes where computation occurs principally memory of cells, assignment as the basic action, and im-
via dynamic change of connection strengths, modeled by plicitly sequential control structures for the execution of
the weights associated with the links, statements. There are two subclasses of procedural lan-

Programing Language Properties. Treleaven said guages, namely, the conventional sequential languages
that when designing a high-level language for programing (for example, FORTRAN and BASIC) and concurrent
neural computers the first question to be addressed is the languages (for example, ADA and OCCAM) that have
scope of the computational models to be embodied; that parallel control structures.
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ADA, the US Department of Defense language, is
Table 1. Categories of Programing Styles and Computational designed for programing embedded computer systems -
Models. large real-time systems which inherently involve concur-

rency. An ADA program is written as a number of
Caoe oral Eamples quasi-independent sequences of statements called Tasks

Poc edir~aJ Programngn

conventional BASIC. FORTRAN. PASCAL (i.e., processes). ADA uses a main PROCEDURE
concurrent where, in contrast, PASCAL uses a PROGRAM. A

shad meroor, ADA. MODULA-2 PROCEDURE consists of one or more Tasks. Each Task
message passing CSP. OCCAM

Ob ect-Onented Pro mtrung SMALLTALK. C. POOL must have a specification part and a "body" containing the
Funcaont Programming local data and code.

data flow ID, LUCID, VAL, VALID Thus, in ADA, parallel programing is based on Tasks
applicative Pure LISP. ML. MIRANDA and also the rendevous, implemented by "entry" and "ac-

Predicate Logic Prog mrmng PROLOG. GHC PROLOG
Producton System Prgrummng OPS5. LOOPS cept" statements. The essential idea of the rendevous be-
Semantic Network Prognmming NEIL LXL tween two tasks is the synchronized transfer of

Neural Nerwok Progra ng P3. information at a predefined point in each process. The
Applicadon-Oriented Programming corresponding "entry" and "accept" statements in a task

Spreadsheet VISICLC. LOTUS 1-2-3 are specified as for a procedure declaration, including
Re!ationaJ Database Dbase3

Robotics ,-M. VAL parameter lists. An "entry" specifies the name and par-
ameters of a servicc which can be called from elsewhere

Treleaven said that conventional languages arc the in the parent unit (normally in a sibling task). An "accept"
only class of programing languages of which most users statement has the syntax of a procedure (without local
of computers are familiar. This class has developed for data declarations) appearing embedded within exccu-
programing the traditional von Neumann stored program table statements, but executes as a critical region.
computer. Hence, the semantics of conventional lan- The entry/accept service works by the calling task ex-
guages reflect the von Neumann programing model: glo- ecuting an entry call statement - similar to a procedure
bal memory, fixed-ize memory cells, assignment, and call- signalling the wish for a rcndevous. The task con-
sequential execution. Concurrent (procedural) lan- taining the entry/accept signals its willingness to provide
guages extend this control flow programing model with the service by reaching the "accept". When both calling
parallel control structures based on processes. plus com- and accepting tasks have arrived, the rendevous occurs.
munication and synchronization mechanisms. A process During the rendevous. the parameters are transferred to
is, an independent program consisting of a private data the accepting task and the calling task suspends execution.
structure and sequential code that can operate on the The body "do-end' of the "accept" is then executed as a
data. Concurrently executing processes operate on their critical region. Once the "accept" statement terminates.
own private data and only interact with one another using its parameters are returned to the calling task. and both
the communication and ssnchronization mcchanisms, tasks resume independent execution until another rende-
The communication mechanism is the waN processes vous is attempted. Treleaven said that although it can be
communicate data among themselves. The most corn- claimedthat this form of shared memoryparallelismisth"
monlx employed mechanisms are: unprotected shared most natural extension to conventional languages. it
(global) memory, shared memory protected by modules seems to have little to offer to the design of languages for
or monitors, message passing, and the rendevous. The neural networks.
synchronization mechanism is the way processes enforce Message Passing. In concurrent (message passing)
sequencing restrictions among themselves. The com- languages such a OCCAM, messages are used to handle
monly employed mechanisms include: signals, svn- synchronized communication between parallel processes,
chronized sending, buffers, path expressions, events, with shared memory being used for state within a process.
conditions, queues, and guarded regions. In general, With message passing, data is passed directly. using a
concurrent procedural languages may be classified by the channel or queue from the transmitting process to the re-
nature of their communication mechanism into: shared ceiving process, which stores the data locally in its private
memory (for example, ADA) and message passing (for store. In OCCAM, as well as the traditional control struc-
example, OCCAM). tures (for example, IF and WHILE) there are also con-

Shared Memory. Treleaven said that in these con- trol structures for sequential (SEO), parallel (PAR), and
current procedural languages, communication of data is alternative (ALT) process execution. Examples of these
by shared memory with concurrent access being control- message passing types of programing languages include
led by the synchronization mechanism (for example, sig- CSP (Treleaven and Gouveia, 1982) and OCCAM, as well
nals, events, monitors, rendevous). Examples of as GYPSY, PARLANCE, and PLITS.
concurrent (shared memory) languages include: ADA, OCCAM, originating from Hoare's CSP (communi-
MODULA, MODULA-2, Concurrent PASCAL, Path cating sequential processes), is based on processes
PASCAL and P1. (PROC) which may execute concurrently and communi-
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cate using channels (CHAN) as shown in Figure 3. The concepts of processes and message passing. Object-
most direct implementation of an OCCAM program is a oriented programing centers on the concepts of object,
network of microcomputers each executing a process class, and instance. An object (cf. module or process) is
concurrently. However, the same program could also be an active system component consisting of some private
implemented by a single time-shared processor, accord- memory and a set of operations. Communication be-
ing to Treleaven. tween objects is via messages, a message being a request

for an object to carry out one of its operations. A class
PROC pl (CAN ci.. cn) - "declaration describes the implementation of a set of objects that rep-

VAR vi, . .. v

. . . resent the same kind of system component. The individ-

PROC p2 (CHAN c2i.c2r) - "declaration' ual objects descril ed by a class are called its instances.
VAR , ... .vm An object's private properties are a set of instance vari-

• . . ables that make up its private memory and a set of meth-

PROC network (CHAN in, out) - ods that describe how to carry out its operations.
cAN ci ,... cn: Ingalls (1978) uses the following example to distin-
PAR guish between Object-Oriented programing and PRO-

p1 (cl,...,cn) interconnection"

p2 (ci. cn) CEDURAL programing:

Figure 3. Program structuring In OCCAM. "some object + 4" means to present "+4" as a message to
the object. The fundamental lifference is that the object is
in control, not the +". If "< some object>" is the integer "3",

A process- the fundamental working element in then the result will be the integer "7". However, if <some
OCCAM - is a single statement, group of statements, or object >"was the string "ABCD" the result might be "ABCD4".

group of processes. Programs are constructed from three
primitive processes: assignment, output, and input. As- To fully support Object-Oriented programing, a lan-
signment "x: = y" sets the value of a variable to an express- guage should embody four properties, according to Tre-
ion. Output "cly" is used to output a value of an expression leaven:
"y" to a channel "c". Input "c?x" sets the value of a variable o Information hiding- where the state of the object is
x- to a value input from a channel "c". A channel is an contained in its private variables, visible only from

unbuffered structure that allows information to pass in within the scope of the object
one direction only, synchronizing the transfer of informa- * Data abstraction - allows a programer to define ab-
tion. Thus, a channel behaves as a read-only element to stract data types, each consisting of an internal repre-
a receiving process and a write-only element to the trans- sentation plus a set of procedures used to manipulate
mitting processing. The transmitter can only write when the data
the channel is empty, while the receiver can only read
when the channel is full. * Dynamic binding - where the type (for instance of a

To control the order of execution of such processes message) can only be determined at run-time and not

OCCAM provides three contrcl structures: sequential from the program text

(SEQ), parallel (PAR). and alternate (ALT), as well as o Inheritance - allows classes, and hence objects, to be
the traditional IF and WHILE constructs. "ALL" con- created that are specializations of other objects, inhe-
trols precede a list of processes, SEQ and PAR defining riting the variables and methods of the superclass.
sequential and parallel execution, respectively. ALT Examples of Object-Oriented languages include
causes exactly one of a list of processes to be executed. SIMULA (the first language to explore Object-Oriented
and will wait until at least one of the "guarding" conditions programing), SMALLTalk, C++, and POOL (one of the
is true. few parallel languages).

To summarize, Treleaven said that in OCCAM a par- According to Treleaven. Object-Oriented program-
allel program is represented as a network ofcommunicat- ac t Trew eav oectieted orm -
ing processes and therefore already contains many of the may be viewed as a more sophisticated form of pro-
iehang sses anquid herefore alray ntas anyaof.t gram structuring to the communicating processing model
mechanisms required of a neural network language. In in languages such as OCCAM. Whereas in the late 1970's
addition, OCCAM contains useful constructs for spec- and early 1980's, processes were the major concept used
ifying the replication of networks of processes and chan- for parallel programing, now, in the late 1980's, objects
nels. On the negative side, OCCAM does not currently are taking over that role. Thus in any very-high-level neu-
allow processes and channels to be created dynamically. ral network language, objects would seem to be the natu-
However, this is not precluded by the semantics of the lan- ral concept for program structuring, with mechanisms for
guage. Another point, Treleaven said, is that OCCAM information hiding, data abstraction, dynamic binding,
does not directly support the concept of a branching axon, and inheritance.
where a single output broadcasts to a set of input chan- Functional Programing. This program operates by
nels. regarding a "program" as a collection of functions in the

Object-Oriented Programing. This type ofprogram- true mathematical sense. A function is applied to its
ing is an attempt to generalize the concurrent language



(input) agreements, which results in output values, and plications of functions to structures. Treleaven said that
may for example, define complex operations over list- the important notion associated with Applicative Ian-
structured arguments. Functional programs possess guages is that the value of an expression (its meaning) is
some important properties not usually found in Proce- determined solely by the value of its constituent parts.
dural styles. For instance, "referential transparency" en- Thus, should the same expression occur twice in the same
sures that the value of an expression is determined only context, it denotes the same value at both occurrences. A
by its definition and not by its computational history. language having this property for all its expressions is
Freedom from side-effects and the restriction of assign- referred to as an Applicative language. There are a num-
ment operations also contribute to a more "pure" model ber of interesting Applicative languages, according to
of computation, according to Treleaven. He then dis- Treleaven, such as Pure LISP (Winston and Horn, 1981),
cussed two important classes of functional programing SASL (Turner, 1979), and MIRANDA.
languages: Data Flow language and APPLICATIVE ian- In the SASL system, for example, a program is a col-
guages lection of equations by means of which the user attaches

Data Flow Languages. In the Data Flow programing names to various objects. There are four types of objects:
model, a statement outputting (i.e., producing) a result numbers, strings enclosed in double quotes, lists, and
passes a separate copy to each statement wishing to input functions. Numbers and strings have the normal proper-
(i.e., consume) the value. There is no concept of variables ties expected, with the ususal kinds of operations defined
in a Data Flow program; data is passed directly from one on them. Lists are written using round brackets and com-
statement to another. Execution of a statement is "cata mas: number = (1,2,3,4,5,6,7,8,9,10) and elements of a list
driven," with a statement being exccuted as soon as all its arc accessed by indexing. For example, the expression
input values arc available. Statements in Data Flow lan- "number 3" would here give the result "3".
guages follow a single assignment rule: a name may ap- Functions are denoted by writing down one or more
pear on the left side of an assignment only once within the equations with the name of the function (followed by
area of the program in which it is active. For the control some formal parameters) on the left and a value for the
mechanism, although execution is data driven, statements function on the right. For instance, the obligatory factor-
in Data Flow language are superficially similar to state- ial is expressed as shown in Figure 4. The order in which
ments in conventional languages. Examples of Data Flow equations are written has no logical significance. Where
languages include ID (Arvind and Gostelow, 1982), VAL order is important a boolean "guard," such as "n>0"
(Ackerman, 1982) and VALID. (Figure 4), is placed in front of an expression. More soph-

In Data Flow languages an important property is the isticated forms of pattern-matching involve the use of list
copying semantics, which means that any operation on a structures in formal parameter positions.
data structure alwavs creates a new structure. For in-
stance, an array is not modified by a subscripted assig- DEF
ment statement "array [(index)1: value" but is processed
by an operator which creates a new array. In the ID Ian- fac 0 = 1
guage this operator appears as:

new arrav-arrav + [index] value fac n = n > 0 -> n * fac(n - 1)
while in the VAL language it is \ritten:

new array: = array lindex:valuel.
These single assignment statements are adequate for
simple assignment of the form: name: = expression, and Figure 4. Program structuring In SASL

even for conditional statements, as long as they are con-
strained to conditional expressions: name := if express- Treleaven said that Applicative languages have a
ion then expression else expression. number of good programing properties such as: (1) the

According to Treleaven, the advantages of Data Flow uniformity of the structures manipulated, (2) implicitly
languages are that their single assignment syntax is simi- expressed parallelism, and (3) the absence of side-effects
lar to conventional languages, that single assignment lan- and explicit sequential execution. However, it is not clear
guages are used to specify directed graphs, and that how powerful these mechanisms will be for programing
parallelism is implicitly expressed. With regard to neural neural networks.
networks, the data-driven model is close in concept tothe Predicate Logic Programing. Logic Programing in
firing of a neuron when new inputs arc available. How- languages such as PROLOG is based on the Horn Clause
ever, the data flow model specifies that a data value must subset of predicate calculus, where the basic concepts
be available on each of the inputs, in contrast to a neural are: statements are relations of a restricted form, and ex-
model, which requires only a subset of the inputs to be ccution is a suitably controlled logical deduction from the
available before a neuron can fire. statements.

Applicative Languages. Applicative languages are For many applications of logic it is sufficient to re-
so called because of the dominant role played by the ap- strict the form of clauses to those containing at most one
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conclusion. Clauses containing at most one conclusion departing from the production system formalism. How-
are called Horn Clauses, after the logician Alfred Horn. ever, Production System languages seem to share with
Each clause is either an assertion or an implication. In Applicative and Logic languages, a "pattern-matching"
general, every assertion is an atom "A", whereas every im- form of execution which is difficult to equate with the neu-
plication has the form "A if B1 and B2...and Bn" and all ral network type of computation.
conclusions "A" and conditions "BI, B2,...Bn" are atoms, Application-Oriented Programing. Treleaven said
expressing a simple relationship among individuals, that he was using this type of programing in his talk to

PROLOG is the predominant I ogic programing ian- cover languages developed for specific application areas.
guage, with a number of parallel variants appearing such In these application areas, the boundary between lan-
as PARLOG (Clark and Gregory, 1981), Concurrent guages and certain software packages or utilities is
PROLOG (Shapiro, 1983) and GHC PROLOG (Ueda, cloudy. Example areas include financial-modeling, rela-
1985). tional data base, and robotics.

According to Treleaven, the main features of Logic As an example of application-oriented lanaguages,
programing are pattern-matching (unification) and sub- Treleaven examined the spreadsheet languages, designed
stitution. He said that the advantages of Logic program- for financial modeling, but also used in the additional
ing include the fact that it is the most "high level" fields of engineering, science, education, statistics, etc.
programing model, in specifying "what" rather than "how" He said that in any field where tabular reports of rows and
a computation is to be executed, and the programing style columns of calculated numbers are required, the spread-
is close to knowledge-based systems. Disadvantages of sheet language provides a very powerful tool. Examples
Logic programing are that the notation is very concise and include VISICALC, MULTIPLAN, and LOTUS 1-2-3.
therefore can be difficult to understand when seen in the According to Treleaven. these application-oriented
form of a program. As with the related Applicative lan- languages appear not to be particularly useful in the de-
guages, Treleaven said that it remains unclear if Logic sign of a neural network language insofar as we consider
languages are related to neural networks, neural networks a fundamental new domain of computa-

Production System Programing. These languages tion rather than just another new application area. He
are primarily concerned with the representation of said that, in contrast, semantic networks are very close to
human knowledge and mechanisms of inference from neural networks.
such knowledge. With Knowledge-Based languages, also Semantic Network Languages. Treleaven said that
referred to as Production System or Rule-Based Ian- semantic networks represent one end of the Connection-
guages, the knowledge base consists of rules in the form ist spectrum with neural networks at the other end. Thus,
of "condition action" pairs, as follows: semantic networks and neural networks are closely re-

RULE rl IF condition1 AND condition2 lated, and any flexible neural network language may also
AND...THEN action1 AND action2 AND ...RULE r2. be able to represent semantic networks.

O erview. A semantic network is basically a directed
These rules may be used in twoways, either reasoning for- graph in which the nodL s represent independent entities
wards from a condition to an action, or reasoning back- which may be concepts or objects, and the directional
wards by hypothesizing an action and using the rules to links represent the relationships between these entities.
verify the condition. Treleaven said that Knowledge- In such a network, information is stored not only in the
Based languages have been used extensively for a variety nodes but (just as importantly) also in terms of the inter-
of tasks including research in artificial intelligence, cog- connections among the nodes. Adding new information
nitive psychology, and learning systems, into the network usually involves creating new nodes or

A Production System typically consists of three parts. changing the interconnections among the nodes. These
namely, the Working Memory, the Production Memory networks can perform searches and simple inferences
and the Inference Engine. The Working Memory is a glo- very effectively and with great parallelism, according to
bal data base of symbols representing facts and asser- Treleaven. One of the fundamental operations of these
tions. The Production Memory stores the set of rules networks is the propagation of simple (for example, I bit)
constituting the program. Lastly, the Inference Engine markers along the interconnections. It is the sumulta-
controls the execution of the rules. neous propogation of markers along many interconnec-

The Inference Engine, during execution, attempts to tions which gives this type of architecture the major
match the orin the Productions with data elements source of parallelism. This type of organization is some-
in the Working Memory, comparing the subelcments of times known as "marker-passing" parallel architecture.each structure. Any variable bound to the element it mat- Since connections play such an important role both in in-
ches is a rule. formation storage/retrieval and processing, semantic net-

Treleaven said that OPS5 and other Production Sys- work models fall into the spectrum of connectionist
tem languages are functionally complete languages; their models.

in-built capabilities are sufficient to compute any com- Treleaven said that there are a number of well-pub-
patible function (subject to resource limitations) without licized semantic network languages. One example is the
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NETL system, which is a simulation of a direct hardware necessary to declare to what the relation belongs. For
implementation of a semantic network. Knowledge is example, when a concept X has a relation R within Y, X
stored in the network in terms of symbolic assertions. The is called the source of this relation and Y is the destina-
system was designed to store/access a large number of as- tion.
sertions quickly, and to perform inferences and searches Treleaven said that IXL is a textual semantic network
in a highly parallel manner. Another example is the language, but the user also has access to a graphical sys-
Japanese IXL language. tem that can be used to specify and debug a knowledge

iXL. The semantic network language IXL was de- base. Networks specified in the graphical notation are
signed at the Electrotechnical Laboratory in Japan for translated into IXL for interpretation. IXL is im-
programing the IXL semantic network machine. IXL can plemented in DEC-10 PROLOG. Further details on the
perform description of knowledge bases, modification, IXL language can be found in Higuchi's paper (Higuchi,
and search operations using semantic networks. In IXL, 1985), which also contains details of the IX machine de-
semantic networks are used to represent declarative signed to execute IXL.
knowledge, and logic-like expressions are used to reprc- Treleaven said that programing languages for neural
sent procedural knowledge. networks still remains one of the least developed areas of

The main features of IXL are shown in Figure 5. neurocomputing. There are a few systems available,
These are: (1) Relations in IXL are classified into basic ranging from environments to languages, that can be used
hierarchical relations (is a, instance of) and general rela- for programing neural networks. These include: P3,
tions [general relations are further classified into asser- which runs on a Symbolics 3600; ANNE, a simulator run-
tion and properties]; (2) a general relation is represented ning on the Hypercube; GINNI, from SAIC of Tucson,
not by a link but by a node in order to precisely define the Arizona; AXON, from Hecht-Nielson Neurocomputer
meaning of the relation; (3) procedural knowledge is de- Corp., California (Hecht-Nielson, 1987); and CONNAR-
scribed in logic-like expressions; and (4) knowledge can TIST which is a slightly modified version of P3 with a few
be checked for inconsistency by the a kind of link. more graphics possibilities and NIL programing language

developed at the University of London, UK.
To construct a relation: P3. The P3 language was developed by Zipser and

assertion (R, X, Y) . Rabin (1986) as a simulation tool to aid in the develop-
property (R, X, Y) ment of the Parallel Distributed Processing (PDP)

group's models. The motivation was that it is easy to code
the basic PDP algorithms, but that the user interface and

To idebugging tools are difficult and time consuming to de-
isa (X Y) velop. P3 is written in LISP and runs on a Symbolics 360U.
instance (X, Y). Although it was not originally intended as a neural com-
ako (X, Y). puter language as such, it has all of the essential pieccs
source (R, X) and has an inherent parallel structure that would map
destination (R, Y). onto suitable parallel hardware, according to Treleaven.

The principle components of the P3 system are the
plan language, the method language, the constnictor, and
the simulation environment. The plan language is a con-

asst (R, X, Y). nection description between each of the nodes (called
prop (R, X, Y). units in P3). and a definition of the types of units which

will make up the model. Each type of unit has an associ-

To connect nodes by a link: ated method or modified LISP program associated with

link (is a X, y) it. This modified LISP language, which implements the
internal computational behaviors of the units in a model

... is called the method language. After the plan and the as-
link (instanceof X, Y) . sociated methods have been specified they are built into
.. an appropriate data structure by the constructor, which

Figure 5. lXL Semantic network language. acts in many ways like a compiler. This data structure is
read into the simulation environment where two layers of

Relations in IXL are classified into basic hierarchi- debugging tools can be used to test the code, and the
clrelations inpp d bL a e sse in b as simulation can be run. The simulation provides the user

cal relations supported by the system and general rela- with a display of the nodes in the user-chosen orientation.
tions which are defined by the user to specify his tsthwndwndmueevrneofhy-

application program. It uses the "window" and "mouse" environment of the Sym-

General relations are divided into assertions and bolics 3600. The debugging tools allow each of the ex-
pected connections to be interactively tested, and allowproperties. When the user defines a general relation, it is "strip chart recorders" to be connected to any of the par-
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ameters of a unit so that the time behavior of that par- command interpreter for execution hosted by a Symbo-
ameter can be measured. ics 3600.

The environment of the network is handled by an ap- A high-level network description language specifies
propriately defined environment that handles any input equations and connections, on a layer-by-layer basis. For
or output connections, and has a suitable defined method. each layer the user may define arbitrary activation equa-
Control over the update sequence of units is also handled tions, learning rules, nonlinearities, and constants. Once
in this manner via a control unit. Without this control unit a network has been defined and connected, the user may
each of the units will be sequentially executed, but execute all or part of the specified model in either inter-
through this unit an asynchronous updating process can active or batch mode.
be simulated. Treleaven thinks that programs like P3 will The GINNI system has a capacity for 5 million pro-
be useful in the early stages of model development when cessing elements (i.e., artifical neurons) and 10 million
the size of the models are modest and there is frequent connections. Weighted connections are processed at a
need for changes in structure, rate of 35,000 per second. These numbers are for the

ANNE. ANNE (Another Neural Network Emula- Symbolics 3600 and 160 Mbytes of swap space. GINNI is
tor) is a neural network simulation system, developed at supplied with three neural network models which can be
the Oregon Graduate Center for the Intel iPSC. This sys- used directly or as templates for custom networks. These
tem consists of a compiler that takes as input a Network models are (1) Adaptive Resonance, (2) Backpropaga-
Description Language (NDL) and generates: (1) a low- tion, and (3) Hopfield.
level generic network specification called the Beaverton UCLA SFINX. Structure and Function in Neural
Intermediate Form (BIF); (2) a network partition utility Connections (SFINX) is a neural network simulator en-
for mapping the neural net onto the iPSC; and (3) a dedi- vironment, developed at the Machine Perception Labor-
cated ANNE emulator for the iPSC. A user describes his atory of the University of California, Los Angeles
neural network in NDL, then specifies the nodes and (UCLA) that allows researchers to investigate the beha-
combines them into a network. The functions of the vior of various neural networks.
nodes for learning and computation are specified by poin- As shown in Figure 6, the SFINX structure is analo-
ters to C procedures. Internal to these C functions, user gous to traditional languages. A neural network algo-
code accesses network parameters via standardized data rithm is specified in a high-level textual language. This is
structures and calls to ANNE. compiled into an equivalent low-level language. Next, thc

The NDL source is compiled into BIF and run low-level language is assembled into a binary data struc-
through the mapper which, using an Intel iPSCPAD ture. Lastly, this data structure (defining the network) is
(Physical Architecture Descriptor) file that described the loaded into the SFINX simulator for interactive execu-
target machine, partitions the network among the iPSC tion.
processors. This mapped BIF is then read by ANNE, and
used to construct a network emulator. (*7*c-** 1.plc Assemblere.Or

The purpose of ANNE, Treleaven said, is to act as a

testbed and debugger for the variety of neural network
models describable by BIF. ANNE is not intended to
model any particular architecture design on which these
networks might be mapped, but rather, it is designed to high leery

run neural networks in an expedient manner in order to del

examine their operating characteristics. As part of the
complete design environment ANNE supplies: (1) a scan- Figure 6. UCLA SFINX environment
ner/builder to construct a neural network from BIF; (2) a
message-passing mechanism for coordinating communi- In SFINX, network specifications have two basic
cation between network nodes on different iPSV proces- parts: (1) set of nodes - a node is a simple computing ele-
sors; and (3) a special timing and synchronization scheme ment composed of memory [storing the state of the node]
which is user controlled. In addition, the user has the and functions [defining how signals are processed]; and
ability to examine, modify, or save pertinent data within (2) interconnections- defining the connectivity and the
the network, including the entire BIF specification (plus flow of data among the nodes.
network state) of the network at any point in the simula- These network specifications arc represented by vir-
tion. tual PE's, each comprising: (1) functional pointer, (2)

GINNI. The GINNI system, developed by Scientific output register, (3) vector of state registers, and (4) vec-
Applications International Corporation (SAIC), is an in- tor of associated weightilink address(es). Lastly, the
teractive development environment for neural networks. front-end of the SFINX simulator is a command inter-
GINNI provides for neural network creation, geometry preter, accepting SFINX shell scripts. These shell com-
configuration, and equation editing, and a compiler and mands include: loa4 peek, poke, run, draw, and ser. Once

a network structure is created, these SFINX shell com-
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mands can be used to exercise the simulator, displaying (3) the network engine. The graphics display shows the
and modifying the state of the network. state of the network, with the operator selecting the set of

IBM CONE. The IBM Computational Network En- procs of interest and also the level of hierarchy. The IXL
vironment (CONE) (Hanson, 1978) programing environ- operator interface is a command shell which controls the
ment comprises: (1) the high-level General Network execution of the network engine. Lastly, the IXL network
Specification Language (GNL), (2) a general intermedi- engine provides a simple interface to the target neuro-
ate network specification (NETSPEC), and (3) an Inter- computer.
active Execution Program (IXP). As illustrated by Figure NIL. The goal of the Neural Network Implementa-
7, neural network programs are specified in GNL and tion Language (NIL), developed at University College,
compiled into the machine-independent NETSPEC. London, UK, is to program a range of neural network al-
Then an assembler translates a NETSPEC into a "Net- gorithms and map them onto a range of neurocomputer
work IXL" for execution on a specific neurocomputer architectures. NIL is intended to cover the spectrum of
simulator or emulator. connectionist models, from semantic networks to neural

networks. It therefore supports the dynamic creation and
S A deletion of nodes and interconnections required by se-

SPEClFICAT1 Soe mantic networks. The language comprises two parts: (1)

basic part - for defining the functions of the nodes and
KS a :the organization of the network, and (2) manipulation

part - for modifying the network, for monitoring its state,
0NL and for interacting with the environment. Central to the

Zdesign of the basic part is the"guarded process" construct:Compiler adfritrcigwt h niomn.Cnrlt h

(input condition = > (statement) where the input condi-

tions define the set of inputs that must be available before
the corresponding statements is executed. An input con-

N6TSPEC dition consists of a subset of inputs, all of which must be
available for the corresponding statements to be ex-

EXECUTION ecuted. Statements comprise Dijkstra's guarded com-
I mands (Dijkstra, 1975), namely, IF, DO, ASSIGNMENT,

and SKIP.

A network is specified, first, by giving function defini-

Assembler tions for the different types of node, and secondly by giv-
ing link definitions of the interconnection network. A
"fun" definition gives the function name, the vector of in-

D:PL.AY Vputs, the vector of weights associated with the inputs, and
Network the vector of the outputs. Once the node functions arc

lxp ENGIN defined, the neural network interconnections are given by
link statements. A link statement specifies the function
name, a list of inputs, a list of initial values for the inputs,
and the list of outputs. Replication statements are also
provided for specifying the replication of similar link
statements.

Figure 7. IBM CONE environment The "manipulation" part, the second part of the lan-
guage, performs the following tasks: (1) reads the values

In the GNL, network specification centers on hier- on the links ofthe network, (2) feeds new information into

archy and function decomposition. The main elements of the network, (3) establishes and deletes links, and (4)

GNL are: (1) proc - the functional processing elements, reads the state of each node in the network. The manipu-

(2) ports - the inputs and output ports of a processor, and lation part of a program has similar constructs to the basic

(3) paths - the communication links between processor's part, being based on guarded commands.

ports. The GNL compiler takes the source statements Future Trends
together with application-specific extensions to the com- Treleaven said that traditionally, each new class of
piler, and produces a NETSPEC generic intermediate parallel computers has led to an associated class of high-
network specification. This description is simply a parts level languages embodying the same model of computa-
list of the various PE's and a list of their topology. tion. An example is the Transputer and OCCAM, both

The NET Interactive Execution Program (NET IXP) based on communicating sequential processes. Another
runs on a PC connected to the Network Emulation I
Processor (NEP). The IXL has three main components: example is Reduction machines and Functional lan-

(1) the graphics display, (2) the operator interface, and guages.
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Although programing systems for neural networks 2. Many "connectionist"-type distributed associative
are still at an early stage of development, a number of networks are not genuine memories because their inter-
trends are discernible, according to Treleaven. Most of connection strengths must be precomputed from the sig-
the current generation of neural network systems are soft- nals and loaded onto the network. For instance, in the
ware simulators that have highly sequential features. Hopfield model, the feedback matrix is computed from
From such simulators, complete programing environ- the wanted outputs.
ments are being developed such as ANNE, SFINX, and 3. There also seems to be a certain amount of confu-
CONE. The neural network programing environments sion concerning the original ideas. Kohonen stated that
typically comprise (1) a high-level textual language, (2) a Anderson was the first to devise the principle applied by
low-level machine-independent network specification Hopfield. However, a genuine associative memory, the
language, (3) a machine-dependent interactive network internal state of which is directly determined by the re-
simulation system, and (4) associated software tools such ceived input siganil patterns, was published earlier by Ko-
as graphical displays of networks. honen. These networks have the same structure (matrix

According to Treleaven, it is to be expected that this feedback) and function (correlation matrix) but there are
trend in programing environments for neural networks no conceptual difficulties of the kind shared by Anderson
will continue. The high-level languages will be enhanced and Hopfield.
for parallelism by absorption of programing concepts According to Kohonen, one has to realize that the
from other classes of languages such as object-oriented two main problems connected with biological memory
languages. In addition, Treleaven expects that a standard and "intelligent" memory of artificial neural networks are:
low-level generic network specification language (for (1) what kind of internal representations of input signals
example, NIL or BIF) may emerge. Howeve r, it is unclear (and representations of knowledge) are formed onto the
where it is possible to develop any standard in the area of neural network before anything is stored and (2) what is
imteractive network simulation systems, given the very the distributed associative memory mechanism itself. Ac-
wide range of neurocomputer architectures currently cording to Kohonen, most of neural network research
under development. only seems to concentrate on the latter question.

A Typical Structure in Neural Networks. The biol-
Associative Memories and Repre- ogicalbrainconsistsofmanyanatomicallydistinguishable
sentations of Knowledge as Internal formations, each one with a definite physiological func-
States in Distributed Systems tion. There exist certain characteristic differences be-

tween the network structure and functions of the various
This topic was discussed by T. Kohonen (Laboratory formations (Shepherd. 1974). Nonetheless, the structure

of Computer and Information Science, Helsinki Univer- depicted in Figure 8 seems to be rather typical for many
sity of Technology. Finland). Two of the main aspects of parts - the neocortex, for example, and the hippocampus.
biological memory are the structure of internal repre- The large symbols stand for neurons (actually, principle
sentations of knowledge in the neural network and the neural cells) and the lines represent neural fibers, the
memory mechanism itself. The questions concerning the axons; the small circles stand for the variable junctions
former must be settled before the latter can be ap- called synapses. Kohonen said that it is already possible
proached. Therefore, in his talk, Kohonen discussed to demonstrate several interesting information process-
"self-organizing maps" of the input signal space which ingphenomena in the basic model of Figure8. In particu-
constitute the information to be stored in a generalized lar, Kohonen spoke about two of them, namely,
distributed associative memory, and then spoke about self-organized formation of ordered internal repre-
distributed associative memory. sentations and associative memory. He said that more

Preliminary Remarks. Kohonen said that the dis- natural behavior is expected to ensue from a higher sys-
tributed, correlation-matrix-feedback type associative
memories have recently been greeted with great enthusi- ,n,. , M
asm. However, he said that the following aspects need to
be emphasized: _.,,.___

1. Associative memories have been implemented by s

digital techniques since 1955. Compared with the exem-
Feedbockplary cases recently discussed in "neural network" lit- -.,"i.

erature, the digital content-addressable memories N
outperform the neural ones by orders of magnitude in ca-
pacity, speed, stability, accuracy, and selectivity of recall.
The only merit of the latter to be studied further is spa-
tial distributedness of the memory traces, which makes Outp,,t * elponle,

the "neural" memories resistant to local damage, like a V
hologram.

Figure 8. The basic structure of neural networks.
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tern organization in which several networks of this type Matching: lx(t)I I ra (lx(0-mi(t) I). ndex c defines the
are interconnected, center of the active neighborhood Nc, and a suitable radius for

it can thereafter be set, as described below.
Self-Organizing Maps of the Sensory Signal Space Updating- mi(t= 1) = mi(t) + ac(t) [x(t)) for i INc, mi(t +1)

Kohonen said that certain attempts to simulate the otherwise. Here 0< at(t)< lisa scalar valued *adaptation gain*

organization of the visual cortex had already been made which is a Monotonically decreasing function of time.

in 1973; it turned out later, however, that it is not easy to Kohonen said that in order that the network would
achieve a high self-organizing power in neural networks operate as a signal processor, each node should also pro-
unless the control of neural activity is made in a more spe- duce an output response. Such responses do not enter
cific way. This finding, first reported by Kohonen in 1981 the self-organizing algorithm, and so it is possible to
(Kohonen, 1981; Kohonen, 1982) has been described in define the response as any function of x and mi. For in-
detail in the latest book by Kohonen (1988). For brevity, stance, the inner product, miTx, or some"sigmoidal" func-
only a shortcut algorithm, derivable from the biophysical tion of this value can be used in a technical
process (Kohonen, 1982) and readout amenable to com- implementation. Kohonen said that we may also assume
putation by contemporary hardware was presented by that an active response is only obtained from the best-
Kohonen (Figure 9). In this figure where a two-dimen- matching node c used.
sional neural network is shown schematically, every neu- Kohonen said that the choice of Nc = Nc(t) and
ron or node has its own parameter vector, mi, eventually ot = c(t) is not unique; many different functional forms
identifiable with the input weight vector of a formal neu- will guarantee the following results. Kohonen and his
ron. Kohonen said that it is assumed that by virtue of the group have tried forms for ct(t) which are inversely pro-
underlying detailed neural network structure, which need portional to t, and exponentially or linearly decreasing
not be known here, the following two partial operations with t. The last choice is simplest. Nonetheless, Kohonen
are implementable: said that it is advisable to distinguish between the initial

ordering phase, during which the mi attain their correct
topological order, and the final convergence phase, dur-
ing which the exact asymptotic values of mi are "fine-
tuned." The former phase may take, for example, 1000
iteration steps, whereby a(t) may decrease linearly from
a rather large value, such as 0.9 to 0.01, and the radius of
Nc(t) may decrease linearly from, say, half of the diameter
of the network to one spacing. During the final phase,
a(t) may decrease linearly from 0.01 to zero, while the
radius of Nc is one spacing. The length of the final phase
depends on the desired accuracy, but in general, it is sig-
nificantly longer - a multiple of the initial one.

responses Kohonen said that it is rather difficult to describe
9. Network for self-organizing maps. analytically what happens in the process defined by the

Figure9 equation shown above, for matching and updating.
Qualitatively, one can state, for instance, that because mi

1. It is possible to compare an n-dimensional signal are always changed as chunks consisting of several neigh-
vector, x, with all the weight vectors, mi, in parallel and to boring units, their value as a function of the network co-
identify that node c, the weight vector mc of which mat- ordinates tends to become smoothed, and very apparently
ches best with x - with respect to some similarity measure also ordered sooner or later. However, Kohonen said
(metric). This node then defines around it an activeneigh- that the boundary effects are very subtle and difficult to
borhood, No, which contains all the nodes within a certain understand. On the other hand, it also seems obvious. ac-
radius from node c. cording to Kohonen, that the mi, or their distribution,

2. The weight vectors within Nc, irrespective of their tend to imitate x, or its statistical density function. In
value, can adaptively be changed towards x such that their other words, some kind of ordered image of the density
similarity with x is increased, function of x will be formed into the network, into the set

Kohonen said that the self-organizing process of values mi. The images of different x values will further
defined by these rules seems to be to a great extent inde- become ordered in such a way that the topology of the
pendent of the choice of metric: computational reasons corresponding nodes in the network tends to be the same
may favor a particular one. If Euclidean metric is used, as the topology of the corresponding signal values of x.
the above rules can be dressed into the following algo- Simulations. Kohonen said that the self-organizing
rithm form. Assume that x = x(t) and mi = mi(t) are func- result, which seems to emerge like deus ex machina from
tions of integer-valued time, t. Further it is assumed that the process can be illustrated with practical examples.
the initial values, mi(O), are random vectors. Kohonen said that he and his group have performed
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demonstrations on a dozen or so maps of very different "responds" to this point. The test was made for each hand
kinds; the most advanced ones are those which have been and the eye separately, by disconnecting the coordinate
used to recognize phonemes from continuous natural signals from the other two organs; the three maps (Figure
speech. The following simple example, presented by Ko- 11) are practically identical, showing that the repre-
honen, demonstrates a rather biological-looking function sentation is triply redundant, according to Kohonen.
which combines several different sensory "channels" in
the same map. In other words, the internal repre- Distributed Associative Memory
sentation of the environment in the map is redundant with Kohonen said that it seems that most "connectionist"
respect to the different sensory modalities, models implicitly assume some kind of localized repre-

The network is of the type shown in Figure 9. The sentations of stored items associated with the nodes of the
input vector to it shall be six-dimensional, and its compo- network. Frequently also, a distinct semantic value is as-
nents shall be derived from the system model depicted in signed to each node. In a genuine, autonomously opera-
Figure 10 in the following way. Two of the signals corre- ting neural network, however, such a specificity cannot be
spond to two coordinates (Q5 and 6) which indicate the preassumed, and in a massive network, it would even be
rotation of an artificial eye. The gaze of the latter shall be technically impossible to load all the nodes with such a
directed to a moving point on the plane. Two pairs of co- meaning, according to Kohonen. He said that assump-
ordinates, (t1, k2) and (Q3, k4), indicate the bending tion of an underlying control system for the routing of sig-
angles of two artificial arms. During learning, these arms nals to the nodes would be absurd and would lead to a
shall touch the same point at which the gaze is fixed, vicious circle in theoretical discussion.

Eye The above self-organizing mapping principle dis-
cussed by Kohonen, on the other hand, is dirctly able to
form localized, spatially encoded representations of the

.5 input signals, as illustrated by the previous example and
numerous other simulation experiments performed by
Kohonen and his group. He said that one has, therefore,
to regard such activity distributions over the network as
the patterns to be stored and recalled. "Knowledge," he
said, might then be represented by a plurality of such
maps, each one describing the encoding of particular sen-
sory signals and possibly their higher aspects.

The mechanism of autoassociative recall of informa-

Figure 10. System model for mapping the environment tion from distributed feedback networks of the type

through several parallel sensory channels. shown in Figure 8 was devised by Kohonen in the early
1970's. Kohonen said that there exist at least two alterna-

When the target point is moving randomly over the tive adaptation laws according to which a genuine dis-
framed area on the plane, a stochastic signal vector, x = tributed associative memory can be formed. One of thcm
( 1, 2, k3, k4, 5. 6), is obtained, the subsequent values is a biologically plausible principle called Novelty Filter in
of which are applied to the self-organizing algorithm, which the feedback is negative, tending to compensate for
The various nodes will then be sensitized to different tar- the input excitation. The second, with positive feedback,
gets on the same plane such that each of the latter selects is of the Hopfield type, although the recalled information,
a different unit c of the neural network in an orderly in a selective form, is perfect only if the changes in the net-
fashion. Figure 11 shows a network of lines drawn onto work are small, and the recalled information identifiable
the said plane. Each crossing and corner point corre- as a perturbation component in the signals. In both of
sponds to a "due" node in the neural network which is then these models, the feedback matrix, N of Figure 8 is of the
selected with these particular coordinates - i.e., which correlation matrix form = Eky(k Y( T , or the sum of

outer products of the output vectors.
Kohonen then discussed some four questions relat-

ing to different forms of memory:
1. Noise content and noise suppression in distributed

associative memory. Kohonen had shown (Kohenen,
1984/1988) that the relative noise content of the recollec-
tion is roughly proportional to the inverse square root of
the number of activated pattern elements in the key pat-
tern. On the other hand, a statistically independent noise
component in the key will be suppressed approximately

Figure 11. Target plane of figure 3 and Its calibration by the same factor.
for the tree channels.
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2. Damage resistance. Because information is repre- Parallel Architecture for Neurocomputers
sented in an ultimately redundant form in a distributed
memory network, locally confined damage to the network P. Treleaven, who had previously presented a paper
node has a very graceful effect on recall accuracy. Ko- on programing languages for neurocomputers (above),
honen has in fact represented the recall accuracy as a surveyed current work on parallel neurocomputer archi-
function of (randomly interconnected) nodes, from which tectures, concentrating on special-purpose hardware im-
calculation of degradation is directly discernible. The plementations and on general-purpose systems. He said
relative accuracy is roughly proportional to the inverse that recent advances in neural computation models will
square root of the number of interconnections per node only demonstrate their true value with the introduction of
in this network. parallel computer architectures designed to optimize the

3. Temporal patterns. The most salient capacity of computation of these models. There are three basic ap-
biological memory relates to an ability to recall temporal proaches for realizing neurocomputers: (1) special pur-
sequences of patterns. To this end, the memory must be pose neural network hardware implementations that are
provided with delayed feedback, such that new patterns dedicated to specific models and therefore have poten-
can be associated with their predecessors. Kohonen said tially a very high performance; (2) neural network simu-
that this mode of operation is obvious and was widely dis- lators using conventional hardware which are slow but
cussed in the early 1970's. allow impiementation of a wide range of models, and (3)

4. Synthesis of new recollections. Kohonen said that general-purpose neurocomputers that will provide a
a widespread misconception concerns the stipulated se- framework for executing neural models in much the same
lectivity of recall. It has been assumed that the memory way that traditional computers address the problems of
should always selectively be able to decide upon and re- "number crunching," for which they are best suited. Ac-
call one of the memorized patterns, an aspect of which cording to Treleaven, this framework must include a
seems to underestimate all linear memory mappings. The means of programing (i.e., operating system and pro-
"intelligent" memory, however, has to possess a certain graming languages), and the hardware must be reconfigu-
ability of generalization, too; interpolation and extrapo- rable in some manner.
lation between memorized patterns is a very simple form Background. Even a small child can recognize faces,
of generalization, according to Kohonen. For instance, a whereas a supercomputer is stretched to its limits perfor-
linear memory, provided with a low degree of noise dis- ming such computations. In contrast, an inexpensive
crimination, is already able to solve an intelligence test computer excels at a series of laborious calculations be-
task. In Figure 12, the uppermost row shows examples of yond most humans. This computational contrast be-
20 patterns which had the same macrostructure but dif- tween computers and humans is striking. Further it
ferent microstructures. The middle row shows three suggests. according to Treleaven, two fundamental do-
examples of "key patterns," which implies the associative mains of computation: Syvnbol Processing (computers)
recollections shown on the lowermost row. Although the and Pattern Processing (humans).
microstructures of the keys were not stored in memory, In crude terms, the brain is a massively parallel natu-
the recollections in all the positions of the macrostructure ral computer composed of 10 to 100 billion brain cells
were synthesized- not much unlike patterns that can be (i.e., neurons), each neuron connected to about 10,000
decomposed and resynthesized from the spatial fre- others. Nuerons seemingly perform quite simple compu-
quency components. Kohonen said that one has to real- tations. The principle computation is believed to be the
ize that neural networks may be able to perform syntheses calculation of a weighted sum of its inputs, comparing this
of many different kinds of representations. sum with a threshold, and forming its output if this thresh-

old is exceeded. Yet the brain is capable of solving diffi-
cult problems of vision and language in about half a

f'] [,osecond (i.e., 500 milliseconds). This is particularly sur-
PROTOTYPES prising given that the response time of a single neuron is

in the millisecond range and taking into account propa-
gation delays between neurons. Thus, it appears that thew z z r n KEY PATTERNS brain must complete these pattern-processing tasks in
less than 100 steps.

The pattern-processing class of problems covering
RECOLLCTIcWS pattern recognition and learning applications are trivialI L I for brains but are far from readily solvable by traditional

(symbol processing) computers. Treleaven said that
there has been a renewed belief that to solve demanding

Figure 12. Demonstration of generalization in associative pattern-processing problems, parallel computing systems

recall, are needed which emulate the organization and function
of neurons.

18



Since the basis of neurocomputers is consideration
' of the structure of brains, Treleaven briefly reviewed the Spectrum of Parallel Architectures

key properties of neural systems as follows. The basic The set of possible parallel architectures for the basis
building block is the neuron. A neuron consists of a cell of a neurocomputer, as shown by Figure 14, range from
body called a soma, dendrites which receive input and dedicated hardware (analogous in complexity to RAM's)
branch out, and an axon that carries the output of the to simulations on conventional computers, according to
cells, one to another. Junctions between neurons, called Treleaven.
synapses, occur either on the cell body or on spinelike ex-
tensions called dendrites. The neuron, in its simplest 01
form, can be considered a threshold unit that collects sig- RAMs
nals at its synapses and sums them together using its in- N
ternal summer. If the collected signal strength is great m 109 " \ Hardware Implemented Nets
enough to exceed the threshold, a signal is sent out from b Computational Arrays

ethe neuron by way of its axon. r Neural Computers
o 106- P Systolic Arrays

Artificial Neural Networks f General Purmose
Parallel Computers

Artificial neural networks are neurally inspired n 3 Conventonal
mathematical models that use a large number of primitive o 10 ompZes
processing elements (PE's) for pattern processing. Typi- e"

cally in neural networks, PE's are organized into layers, s 0
with each PE in one layer having a weighted connection
to each PE in the next layer. This organization of PE's Node Complexity
and weighted connections creates a neural network, also Figure 14. Spectrum of neurocomputer architectures.
known as an artificial neural system (ANS). A neural net-
work learns patterns by adjusting the strengths (weights) There are three distinct approaches currently being
of the connections between PE's, analogous to synaptic taken for supporting neural network models:
weights. Through these adjustments a neural network ex- * Special-Purpose Hardware - specialized neural net-
hibits properties of generalization and classification, work hardware implementations that arc dedicated to
Each component of the PE corresponds to a component a specific neural network model and therefore have a
of the neuron, as shown in Figure 13. potentially high performance

* General-Purpose Neural Architectures-generalized
N nProcess!n Element neural computers for emulating a range of neural net-

work models, thus providing a framework for execu-
Dendrites Inputs ting neural models in much the same way that

Synapses Weights traditional computers address the problems of number

Summer Summation Function crunching

Threshold Threshold Function e Simulations-neural netmork simulators using con-

Axon Net Output ventional hardware which are slow but allow support
of a wide variety of models.

Research into parallel architectures for neurocom-
Figure 13. Correspondence of a neuron and PE. puters largely falls into two camps: special-purpose archi-

tectures and general-purpose architectures. Treleaven
Treleaven said that there are many different types of then examined the candidate neural network models for

neural networks. Hecht-Nielson (1987) states that there direct hardware implementation and also the candidate
are at least 30 different types of neural network models, architectures for general-purpose neurocomputers.
currently being used in research and/or applications, of Special-Purpose Architectures. Treleaven said that
which 14 types are in common use. Perhaps the best the approach for special-purpose neurocomputer archi-
known neural network models are the Hopfield model tectures is to directly implement a specific neural network
(Hopfield, 1982), the Boltzmann machine model (Ackley model in hardware to give a very high-performance sys-
et al., 1985), and the Error Propagation model (Rumel- tem. Basically, any neural network model could be
hart and McClelland, 1986). Thus, neural networks are chosen, although currently a Hopfield associative mem-
massively parallel interconnected networks of simple ory model is typically favored because of its simplicity.
(usually) adaptive processing elements and their hierar- Treleaven said that in general, neural network (or Con-
chical organizations, which are intended to interact with nectionist) models are of two broad classes, namely, as-
the objects of the real world in the same way as biological sociative memories and categorization or learning
nervous systems do. systems.
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With associative memories, information can be re- * Madaline (MDL) - a bank of trainable linear combi-
trieved based on the content of the memory (autoassoci- ners that minimize mean square error
ator), or a relationship between remembered pieces of * Neocognition (NEO) -a multilayer hierarchial char-
information (pair-associator). In addition, with both acter recognition network
types of associated memory a corrupted "key" will lead to
a recall of the nearest stored event. * Perceptron (PTR) - a bank of trainable linear dis-

With learning systems, data is presented repeatedly criminants
according to a set of rules, and the task is for the system * Self-Organizing Map (SOM) - a network forming a
to extract the underlying patterns. Learning systems can continuous topological mapping from one compact
be further classified into supervised and unsupervised manifold to another, with the mapping metric density
learning. During supervised learning, as in the varying directly with a given probablility density func-
Boltzmann machine and the "backpropagation of errors" tion on the second manifold.
algorithm, expected results govern the learning process. According to Treleaven, two of the most important
The "competitive learning" algorithm is an example of un- neural network models are the Hopfield model (i.e., auto-
supervised learning. associator), which is typically chosen for special-purpose

Other neural network models include: hardware implementation, and the backpropagation
* Adaptive Resonance (ART) - a class of networks that model, the most popular neural network learning model

form categories for the input data, and where the coar- in use today. Treleaven said that the resurgence of inter-
seness of the categories is determined by the value of est in neural networks is largely due to Hopfield, who
a selectable parameter showed (Hopfield, 1982) that a neural network of inter-

* Backpropagation (BPN)- a multilayer network that connected processing elements will seek an energy mini-
minimizes mean square mapping error ma. The Hopfield model acts on a binary input vector, I,

" Bidirectional Associative Memory (BAM) - a class of mapping it to a binary output vector, 0, both of n-ele-
single-stage heteroassociative networks ments, using a nxn weight matrix, W. The model com-

prises two alogorithms, namely, for storage and recall.
Boltzmann Machine (BCM) - a class of networks that The vector NET recalled from matrix is the same vector
uses a noise process to find the global minimum of a the neural network was taught, depending on the number

of stored patterns. Although the Hopfield model is de-
* Brain State in a Box (BSB) - a single-stage autoasso- signed to store a single binary vector, it can easily be ex-

ciative network that minimizes the mean square error tended to store several binary vectors, according to
Treleaven. He said that the Hopfield model is typical of

* Cerebellatron (CBT) - learns the averages of spatio-
temporal command sequence patterns and relays a class of single-layer neural network systems, but many

these average command sequences on queue - real-world problems cannot be represented by such neu-
ral networks. According to Treleaven, the solution to this

" Counterpropagation (CPN)-a network that func- problem is to introduce a third layer, called the hidden
tions as a statistically optimal self-organizing lookup layer, between the input and output layers. The best
table and probability density function analyzer known three-layer model is backpropagation.

* Hopfield (HOP) - a class of single-stage autoassocia- General-Purpose Architectures. Treleaven said that
tive networks without learning the design of general-purpose parallel computers that are

candidates for neurocomputer architectures, centers
Lernmatrix (LRN)- a single-pass, nonrecursive, around a small set of parallel programing models. As

shown in Figure 15, each programing model comprises a

COMPUTATION DOMAIN

Numeric Processing Symbolic Processing Pattern Processing

PROGRAMING LANGUAGES

Procedural Object-Orented Single-Assignment Applicative Predicate Logic Production System Semantic Network

OCCAM, ADA SMALLTALK SISAL Pure USP PROLOG OPS5 NETL, IXL

COMPUTER ARCHITECTURES

Control Flow Object-Oreffletd Data Flow Reduction Logic Rule-Based Cellular Array

TRANSPUTER DOOM MANCHESTER GRIP ICOT PIM NON-VON CONNECTION

MACHINE

Figure 15. Parallel computer architectures.
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computer architecture and a corresponding category of WARP). A class of programing languages corre-
programing languages. These parallel architectures and sponding closely to the computational arrays are se-
their associated programing languages have the following mantic network languages such as NETL and IXL.
properties: Treleaven said that when considering the above ca-
" Control Flow. In a control flow computer (for tegories of parallel architectures as the basis of a neuro-
example, Sequent Balance, Intel iPSC, INMOS Trans- computer, the most appropriate is cellular arrays. The
puter) explicit flows of control cause the execution of other six categories are based on far more complex cor-
instructions. In their procedural languages (for otatix moes are as ed by the simple "om-example, ADA, OCCAM) the basic concepts are a putational models than are required by the simple 'thre-
gloalemory A , csasm e s the basic cti, a shold" models typical of neural computing. He said that
global memory of cells assignment as the basic action, the computational framework of cellular arrays is consist-

ent with an idealized neural structure and supports well
" Object-Oriented. In an object-oriented computer (for the distributed nature of data in these neural network

example, APIARY or DOOM) (see Recce and Tre- models. An additional advantage is that frequently, even
leaven, 1988) the arrival of a message for an instruction with current levels of VLSI processing, many processing
causes the instruction to execute. In an object- elements can be fabricated on a single chip. Two specific
oriented language (for example, SMALLTALK or cellular arrays, namely, the programmable systolic chip
POOL) the basic concepts are: objects are viewed as (Fisher, 1983) and the connection machine (Treleaven,
active, they may contain state, and objects communi- 1987), are indicative of a "general-purpose" neurocom-
cate by sending messages. puter, according to Treleaven.

" Data Flow. In a data flow computer the availability of 1. Programmable Systolic Chip. Programmable Sys-
input operands triggers the execution of the instruction tolic Chips (PSC's) can be assembled into a number of
which consumes the inputs. In a single-assignment lan- regular topologies (linear, two-dimensional array, etc.) to
guage (for example, SISAL, ID, LUCID) the basic support the family of systolic algorithms. Once the PSC's
concepts are: data "flows" from one statement to an- are connected, they are configured for a specific systolic
other, execution of statements is data driven, and algorithm by down-loading identical code into each PSC.
identifiers obey the single-assignment rule. The PSC's then operate as a synchronous pipeline with

" Functional. In a reduction computer (ALICE, for the data being pumped from chip to adjacent chip. A
example, or GRIP) (Recce and Treleaven, 1988) the PSC processor (Figure 16) consistsof five functional units
requirement for a result triggers the execution of the that operate in parallel and communicate simultaneous-
instruction that will generate the value. In an applica- ly over the three buses. The five functional units are: a
tive language (such as Pure LISP, ML. or FP) the basic 64x60-bit microcode dynamic RAM and a microsc-
concepts are application of functions to structures, and quencer, a 64xO-bit DRAM register file, an ALU, and a
all structures are expressions in the mathematical multiplier-accumulator (MAC), plus three input and
sense. three output ports.

* Logic. In a logic computer (ICOT PIM or BULL
DDC, for example) (Recce and Treleaven. 1988), an REGIS
instruction is executed when it matches a target pat-
tern and parallelism (or backtracking) is used to ex-
ecute alternatives to the instruction. In a predicate BUS
logic language (for example, PROLOG) the basic con- BUS 2
cepts are that statements are relations of a restricted BUS 3

form, and that execution is a suitable, controlled logi- Figure 16. Programmable systolic chip.
cal deduction from the statements. 2. Connection Machine. This machine is designed

" Rule-Based. In a rule-based computer (NON-VON, for concurrent operations on a knowledge base rcpre-
for example, or DADO) (Treleaven, 1987), an instruc- sented as a semantic network. A semantic network is a
tion is executed when its conditions match the contents directed graph where the vertices represent objects (for
of the working memory. In a production system lan- example, sets) and the arcs represent binary relations (for
guage (for example, OPS5) the basic concepts are: example, set membership) required by the knowledge to
statements are IF...THEN...rules and they are re- be represented. A connection machine comprises 64K
peatedly executed until none of the IF conditions are identical "intelligent" memory cells connected as a hyper-
true. torus structure. A connection machine (Figure 17) is a

" Cellular Array. In cellular array computers each pro- bit serial processor, comprising a few registers, an ALU,
cessor is connected to its "near-neighbors" in a regular a message buffer, and a finite state machine. All cells are
pattern that matches the flows of data and control in configured with the same program, known as the "rule
arrays (examples: Connection Machine, MPP, DAP, table," which defines the next state and output functions
and CLIP) and systolic array processors (such as of the finite machine. A cell reacts to an incoming mess-
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age according to its internal state and the message type, ly appealing. In addition, analog circuits generally oc-
and performs a sequence of steps that may involve arith- cupy less area than the equivalent digital circuits. How-
metic or storage operation on the contents of the mess- ever, Treleaven added, a number of
age and the registers, sending new messages, and technology-dependent limitations are encountered.
changing its internal state. These are: (1) cost [chip area is the principal cost in

VLSI], (2) power [analog processing elements typically
require a high power consumption], and (3) parameter
variation [fabrication of small devices introduces vari-

RULE ations t-ffecting the currents transferred].
TABLE RTreleaven said that researchers at Caltech are inves-

tigating VLSI architectures for implementing neural net-
works, specifically networks based on the Hopfield

AL model. The Caltech circuit for the Hopfield model is il-
I Ilustrated in Figure 19. This Hopfield circuit consists of
TE TYPE DATA three major components: amplifiers, interconnection ma-

trix, and capacitors. The collection of amplifiers (cf. neu-
rons) with gain function V= g(v) are connected by the

Figure 17. Connection machine "intelligent" memory cell. passive interconnection matrix which provides the unidi-
rectional synapses, connecting the output of one neuron
to the input of another. The strength of this interconnec-

Special-Purpose Neurocomputers tion is given by conductance Gif = Go Tij. Lastly, the ca-
Treleaven said that when considering the implemen- pacitances determine the time evolution of the system.

tation of neural network models, the basic corresponding G..
hardware structure is the corssbar switch (Kohonen,
1987; Kuczewski, 1987), shown in Figure 18. This cross- Vj
bar switch can be enhanced for neural network models by
the introduction of lateral feedback. From this organiz- V i V
ation it is possible to devise a complete operational mo-
dule for neural systems, as proposed by Kohonen (1987) t()
and illustrated by Figure 18(b). Kohonen states that the Ci >

most natural neural topolog% of a neural network would
be two-dimensional and the distribution of lateral feed- Figure 19. Circuit diagram for Hopfield model.
backs within the system could be the same around every
neuron. The Caltech chip. based on the above Hopfield cir-

cuit, contains 22 processing elements and a full intercon-
nection matrix of 462 elements. The chip, fabricated in

- , k: l - - -n , 4 -j.m NMOS technology, measures 6700 gm x 5700 pm.
_ and has 53 10 pads. This vas followed by a 289-neuron
!1 .CMOS chip.

AT&T are investigating CMOS associative memory-- '- -' 1---'° chips that contain over 50 artificial neurons on a single
,,,A,,,,chip using a combination of analog and digital VLSI tech-

M c .......ft ",..0 P1nologies, together with a special microfabrication pro-
cess. The chips are being used in pattern recognition
where they perform feature extraction.

Figure 18. Neurocomputer components. One associative memory chip implements a connec-

tionist model of a neural network, and consists of 54 am-
Treleaven said that developments of special-pur- plifiers plus a programmable coupling network where

pose, very-high-performance, typically analog circuits for each amplifier can be connected to every other amplifier.
neural networks are underway at a number of locations. Figure 20 shows a schematic of the implemented circuit.
Leaders in this field are: Jackel at AT&T Bell Labora- It consists of an array of 54 amplifiers with their inputs
tories (Holmdel), Lambe at the NASA Jet Propulsion La- and outputs interconnected through a matrix of resistive
boratories in Los Angeles, Mead at California Institute of coupling elements. All of these elements are program-
Technology (Caltech), and Goser at the University of mable -i.e., a resistive connection can be turned on or
Dortmund, West Germany. off.

Implementing large numbers of individually primi- The connections between the individual "neurons"
tive processing elements in VLSI technology is intuitive- are provided by amorphous silicon resistors which are
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-- e CMOS chip in the last stage of fabrication required, especially to overcome connectivity limita- n,
on-beam direct-wiring. The associative mem- tions of VLSI. nd
is fabricated in 2 .3 -Iam CMOS and contains * Asynchronous operation. With the potential to match in-
)0 transistors in an area 6.7x6.7 mm. Ninety the heterogeneous richness of the brain, neurocompu- al-

he chip area is used for the coupling network. ters may need to become multi-instruction multi-data eir
2sts were made with 10 stable states of 40 bits stream (MIMD) devices. ne
,ramed into the associative memory circuit.
takes to converge to a stable state is between 9 Programmability. For a neural computer to be :er
nanoseconds. general-purpose, and hence support a wide range of III

neural network models, the PE's must be program- ed
OUTPUT LINES mable both in terms of interconnections and the func- edO LINES tion supported by a PE. m-

A A2 A A4 e
1 2 3 4 Stability. Any asynchronous parallel system requires of

the processing and communications to provide inher- )la
S, l- - ent stability in all programed situations. o-

* Virtual processing elements. For a neurocomputer to ;u-
- , - -execute potentially any massively parallel neural net- al

work, the concept of virtual processing elements that rts
can be "paged" onto the neurocomputer from a back- an

- - - -ing store seems inevitable. n-

Treleaven then examined some of the general-pur- d,
-i - -- pose neurocomputers that have been developed, and said ;c-

that neurocomputer development is a subject still in its -d
infancy, hence the number of complete working neuro- s
computers is limited. "t

Treleaven said that in the US neurocomputing pro- g
ducts are being marketed by such corporations as TRW,
Hecht-Nielson Neurocomputer (HNC) (San Diego, Cali- e

A A A A fornia), Nestor Inc. (Rhode Island), Verac Inc. (San
2 Diego, California), AIWARE Inc. (Cleveland, Ohio), x-

Neural Systems Inc. (Vancouver, Canada), NCI (New
ire 20. AT&T associative memory schematic. Jersey), Neuraltech Inc. (Portila Valley), Neuronics Inc.

(Chicago, Illinois) and SAIC (Tucson, Arizona). The a
Purpose Neurocomputers pioneer of neurocomputer design is Hecht-Nielson, who a

rding to Treleaven, neurocomputing is a fun- has produced mo-t of the commercially available general- ar
lv different domain of computation from tradi- purpose neurocomputers in which an arbitrary intercon-
nputing. Neurocomputing performs "pattern nectivity of the PE's can bc defined. At TRW, )it

z." while traditonal computers perform "symbol Hecht-Nielson produced the Mark Ill and Mark IV ma-
g specified by an explicit series of instructions, chines. The Mark IV has 200,000 PE's, each capable of IS
traditional computers are extremely flexible for 25 interconnections. Subsequently, Hecht-Nielson's own

rocessing. Treleaven said that what now is re- company, HNC, has developed the ANZA system, a co-
a complementary general-purpose neurocom- processor board which interfaces to an IBM PCAT. 4

le to support a spectrum of neural network ANZA has 30,000 processing elements and allows a total
For a general-purpose neurocomputer, a num- of 300,000 interconnections between all the PE's. Lastly,
,perties are identifiable: Nester Inc. produces neurocomputer systems for hand-
ular processing element. PE's should be modu- written-character-recognition based on the work of ;
I hence replicatable, therefore each PE should Cooper at Brown University, Prov;dence, Rhode Island. I-
elf-contained unit comprising processor, com- In Europe, neurocomputers have been produced by isations, and memory. Alexsander of Imperial College, London, by Kohunen of it

ive processing element. To make large neuro- Helsinki University, Finland, and by Garth of Texas In- .0
-ters (with millions of PE's) feasible, a PE must struments (TI). Alcxsander has developed a series of sys- r
mitive and must allow a number to be packed on tems called Wisard. Wisard II is organized as a
'e VLSI chip or wafer. hierarchial network of PE's, with each PE being con-

allow neurocomputers to structed from commercial RAM. The RAM's address in- d
rar communication. Totructures t puts are used to detect binary patterns, with the input field

ensible, regular communications structures are for an image (comprising 512x512 binary pixels) being a
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connected to the first layer of PE's. Kohonen, a pioneer spaciotemporal (Formal Avalanche), neocognition,
in associative 'memory neural" networks, has ex- Hopfield (plus bidirectional associative memory) and
perimented with several "neural network" distributed counter-propagation networks. In these networks the in-
memories. He-has recently completed a commercial- terconnection geometry and the transfer equations are al-
level neurocomputer based on signal process modules ready specified. However, the number of PE's, their
and working memories to define a set of virtual process- initiAl state and weight values, learning rates, and time
ing elements. This neurocomputer, optimized for speech constants are all user selectable.
recognition, allows 1000 virtual processing elements with TRW Mark Ill and IV. The TRW neurocomputer
60 interconnnections. It can perform a complete spectral family consists of the Mark 11 simulator, the Mark III
analysis and classification in phenomes every 10 ms. Last- neurocomputer workstation, and the Mark IV high-speed
ly, GarthofTl, workingwiththeUniversityofCambridge, neurocomputer (Kuczewski, 1987). All share the com-
UK, has developed NETSIM , a three-dimensional array mon artificial neural system environment (ANSE) user
of processing elements, each based on specially designed environment. The Mark III neurocomputer consists of
chips plus a 80188 microprocessor. up to 15 physical processors, each built from a Motorola

In Japan, H. Nakano of Tokyo University has com- M68020 microprocessor and a M68881 floating point co-
pleted a number of neurocomputers, some dating from processor, all connected to a common VME bus. A neu-
1970. The Association, his best known neural network ral network to be processed is distributed across the local
system, is a hardware, correlation-matrix type of associa- memories of the PE's. Currently, the Mark III supports
tive memory. A number of companies such as Japan's Fu- 65,000 virtual processing elements with over 1 million
jitsu are also working on neurocomputers. The trainable interconnections, and can process 450,000 in-
properties of the above neurocomputers are summarized terconnections per second.
in Figure 21. The Mark IV neurocomputer is a single high-speed,

pipelined processor using virtual PE's and interconnec-

Ncurcompte Vimr FlJ ir - - tion structure. Here the bulk of the hardware is devoted
to forming the interconnections. The Mark IV supports

HNC A,".A 30K 300K 25K 236,000 virtual processing elements with over 5.5 million

TRWIMARX Il 65K 1M 45K trainable interconnections, and is capable of processing
T 5 million interconnections per second, including the pre-

TRw MARK IV 256K j.5M SM weighing function and learning law.

IBM NEP IM 4M 800K IBM NEP. IBM has developed a complete ex-

NTS( 256,-27X 6 4perimental neural network programing environment,
___________ _______ ____ _ called Computation Network Environment (CONE).

CONE comprises: a network emulation processor

Figure 21. Comparison of Neurocomputers. (NEP- a cascadable parallel coprocessor for the PC); a
network interactive execution program (IXP); and a high-

HNC ANZA. The ANZA Neurocomputer, de- level generalized network language (GNL). The major

veloped and marketed by Hecht-Nielson Neurocomputer functional blocks of a NEP consists of six major units: a

Corporation, is designed to support any neural network 5MIPS T1320 signal processor, a 64-K-word x 16-bit

algorithm. The ANZA system comprises an ANZA SRAM data memory, a 4-K-word x 16-bit SRAM pro-

neurocomputer coprocessor board for an IBM PC AT, a gram memory, and a 100 bytes/sec inter-NEP NEPBUSneurcomute copocesorboar fo anIBM C A, a interface. Up to 256 NEP's can be cascaded in a unidi-
user interface subroutine library, and basic netware pack-
ages for the common neural network algorithms. The rectional interprocessor communications netwyork (NEP-
ANZA coprocessor board plugs into the backplate of a BUS), supporting in total 1 million virtual PE's and 4

ANZAcopocesorboad pugsint th bakplte f a million interconnections. To preserve interprocessor
PC AT. The board is based on a Motorola M68020 plus

a M68881 floating point coprocessor. With 4 Mbytes of communication bandwidth, each NEP contains a high-

dynamic RAM to store the network, ANZA is capable of speed "local 110" unit for the attachment of real-time I/O

implementing 30,000 PE's with 48,000 interconnections. devices. Both the NEPBUS and the local I/O interface

These interconnections are updated at 25,000 intercon- are FIFO buffered, allowing a group of NEP's to asyn-

nections per second during learning and 45,000 in feed- chronously update the state of their respective portions

forward mode. of a large neural network. Each NEP can stimulate about

The user interface subroutine library (U1SL) is a col- 4,000 virtual PE's and 16,000 interconnections, with 30 to

lection of routines providing access to the ANZA system 50 complete network updates per second. The number

functions. Examples include: load network, set learning, of PE's emulated (by each NEP) can be increased by de-

etc. Lastly, the basic netware package contains five of the creasing the total number of interconnections. In addi-

classic neural network algorithms in a parametized spe- tion, the length of a network update cycle can be reduced

cification that can be configured for a specific user appli- by dividing a network across more of the NEP's, with a

cation. These algorithms are: Backpropagation, speed increase proportional to the number of NEP's.
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IC Wisard. The Wisard systems are a series of neur- The solution enquire, CF30111, operates as a back-
ocomputers specifically for image processing, developed end vector processor for the microprocessor. Assuming
by Alexsander, and commercialized as the Wi- a network "solution" is given by Oj = f(li.Tij), the solution
sard/CRS1000 by Computer Recognition Systems Ltd. enquire computes the sum of products between the input
Design of a Wisard system centers on an array of RAM vector, 1, and the relevant synapse vector, T, in its mem-
cells used as a set of discriminators for the image to be ory, and returns the result as a 16-bit integer to the micro-
processed. These discriminators operate in an analogous processor. The microprocessor then computes the
way to a hologram. Consider the processing of a 512x512- nonlinear function, fO, to produce the output of the neu-
bit binary image. From this binary image, groups of n bits ron. The output is then passed to the communications
are extracted to form n-tuples, using a random but fixed processor for transmission to the network to which the
mapping. In this case the image contains 2* *18 bits, so neuron is logically connected.
for n =8, 2**15 n-tuples are taken. Each n-tuple is then The solution chip performs four instructions: (1)
used to address a specific RAM cell in a discriminator, dummy cycle - chip management [for example, clear reg-
Conceptually, in this example, 2**15 RAM cells, each of ister]; (2) repeat-multiply-sum - solve the network by
256 bits are needed. However, for efficiency these cells multiplying an input vector by the corresponding synapse
can be grouped into discriminators. By using RAM ar- and adding it to the sum register; (3) read-write - move
rays organized as k-bit words, k discriminators may be data within memory, allowing access to the synapse and
provided simultaneously. input memory space from the microprocessor; and (4) re-

Initially all cells in these discriminators are set to peat-multiply-sum-write - update synapses by multiplying
zero. During training, a discriminator is selected and l's two 8-bit vectors (for example, Input x Delta) with pres-
are entered into all cells addressed by the image. If this cale, adding the product to a 16-bit term (Tij) and stor-
image is presented again, the effect is for the discrimina- ing it as a new term (T'ij).
tor to produce a logical 1 on all its outputs. A partial Organization of the communications chip centers on
image produces a reduced set of l's. a 64-bit message register, where the first two bytes repre-

CRS has developed the Wisard by adapting its sent the message's destination address (relative to the
CRS1000 automatic inspection system. It operates as fol- sending mode) and the remaining bytes are for data. The
lows: Initially a video image is captured, and Wisard fet- addressing scheme allows messages to be transmittted to
ches n-tuples from the image store, thresholding the data +1-15 NETSIM cards in each of three dimensions. Ac-
with a programmable comparator. The address in dis- cording to Treleaven, the NETSIM neurocomputer has
criminator memory is made up from an autoincrement- been shown to support the majority of common neural
ing counter and the 5-tuple (say ABCDE) read from the network algorithms including the Hopfield model and the
image memory. In Wisard up to 16 discriminators are di- Backpropagation model. Each NETSIM card is capable
rectly supported by having a 16-bitwide memorydiscrimi- of solving rectangular networks at a rate of 4 million sv-
nator memory. Tuples ranging from 4 to 8 tuples are napses per second and with learning at a rate of 1.3 mil-
sufficient for most industrial applications, according to lion synaptic updates per second.
Treleaven. UCL Neuro-Chip. At University College, London,

NETSIM. The NETSIM neurocomputer has been UK, Treleaven and coworkers designed and are curren-
developed through a collaboration of Texas Instruments tly implementing in CMOS a primitive processing ele-
(UK) and Cambridge University (UK). A NETSIM sys- ment for building a parallel MIMD neurocomputer,
tem, as illustrated by Figure 22, consists of a collection of configured from an array of these elements (Recce and
neural network simulator cards plbysically connected in a Treleaven, 1988). The goal of the neurocomputer is to
three-dimensional array, with a PC host acting as front- support a range of connectionist algorithms, spanning
end. Each NETSIM card is an autonomous processing both neural network models and semantic network lan-
element, comprising an industry-standard 80188 micro- guages.
processor, two custom chips, a solution engine, and a Each processing element, as shown in Figure 23,
communications processor, along with three memories comprises three units: communication, processor, and
for synapses, program, and BIOS. local memory. The communication units, when intercon-

nected by their bidirectional, point-to-point connections,
3.0 ARRAY OF NETSIM CAROS support a logical bus structure for routing message pac-

kets. Each processing element has a neuron name, used
for message routing. The processor consists of a primi-

-- / |,. - "tive ALU, supporting ADD, SUB, AND, XOR, etc.;two
,__! / I"'- visible registers, an instruction pointer IP, and an accu-

..[7... ,mulator AX; and 16 instructions. All data, addresses, and
-t_ _instructions are 16 bits. Treleaven said that a processor

with only two instructions could have been built, but this

Figure 22. NETSIM neurocomputer system. would have increased program sizes and hence the local

25



memory required. The memory is 4Kx16-bit words, al- rently, GaAs does not seem to provide any major bene-
though the instruction set allows a larger address space. fits compared to silicon for neurocomputers.

* Optical techniques for information processing have
. !ihi made rapid advances in recent years. Within this area,

1Iooe dn I- _Vvalue the term "optical computing" is defined as: the use of op-

tical systems to perform computations in one-dimen-
Neu-n: .. w, cd-," sional or multidimensional data that are generally not

" .. J L,. images (Applied Optics, 1987). The goal of this work is to
build an optical binary digital computer which uses

A LL.J * photons as the primary information-carrying medium
____r___r__.s_r rather than electrons. The potential advantages of opti-

AX-t I cal computers include:
S iIA r 1* They generate high space-bandwidth and time-band-

width products.

4K x 16 bi wos * They are inherently two-dimensional and parallel.

* Optical signals can propagate through each other in
separate channels with essentially no interaction.

Figure 23. UCL MIMD "Neural" Processing Element * Optical signals can interact on a subpicosecond times-
cale.

This neurocomputer is configured by loading a * Optical devices can, theoretically, be made orders of
simple program into each element; the code can be ident- magnitude smaller than silicon devices.
ical or different for each element. During operation,
messages are sent from element to element. Each mess- Thus the potential of optical parallel computers for
age (see Figure 23) consists of the neuron name (defining neurocomputers is clear, according to Treleaven.
the destination processing element), the dendrite (defin- In the longer term, molecular computers comprise an
ing the input link), and the value. When a message arrives exciting research area, Treleaven said. Although no
at an element, an interrupt is generated and the message molecular computing device seems so far to have been
is processed by the neuronlike element. Treleaven said constructed, the possibility of organic switching devices
that this investigation of MIMD neurocomputers is still and conducting polymers may come about from current
at an early stage, and he expects to design and fabricate developments in polymer chemistry, biot,-chnology, the
a series of progressively simpler neural processing ele- physics of computation, and computer science. Tre-
ments during the course of the project. leaven said that although there is no clear consensus as to

the viability of molecular computing devices, the poten-
New Technologies tial for collaboration with neurocomputcr research is ob-

Treleaven said that advances in technology have al- vious.
ways constituted a major driving force for computer de- Optical. Using optical computing devices, it is the-
velopment. Three technologies that could have a large oretically possible to fabricate integrated circuits that are
impact on future computers are: in the short term, gal- smaller and faster than those based on electronic technol-
lium arsenide (GaAs); in the medium term, optical de- ogy and have greatly increased density Optical comput-
vices; and in the long term, molecular devices. Research ing research is being pursued throughout the world.
into new tcchnolgies such as optical devices, has ex- Major national projects include, in Japan, the $70 million,
panded rapidly in recent years. In addition, many re- 6-year Optoelectronics Project; in Europe, the European
searchers in these new technologies look to Community's Joint Optical Bistability Project; and in the
neurocomputing to provide parallel architecture to US, the Optical Circuitry Cooperative, centered at the
utilize these novel devices. University of Arizona, in Tucson. The largest single com-

GaAs technology has made rapid progress in recent pany commitment to optical computing is that of AT&T
years, particularly in the area of digital chip complexity, Bell Laboratories.
according to Treleaven. When comparing GaAs with sili- Optical computing research can be divided into: (1)
con, its two main advantages are higher switching speed optical digital computing [an optical supercomputer per-
and greater resistance to adverse environmental condi- forming binary digital computations which use bistable or
tions. However, GaAs is inferior to silicon in terms of cost nonlinear optical devices to model electronic transistors]
(of material and lower yield) and transistor count (related and (2) optical analog computing [an optical system per-
to yield and power consumption). For neurocomputers, forming pattern recognition computation which uses len-
packingdensity (i.e., miniaturization) of PE's would seem ses for Fourier transform and convolution operations].
to be more important than switching speed. Thus, cur- To build optical digital computers, the prerequisite

is a three-port optical transistor that exhibits optical bis-
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tability. Optical bistability is analogous to light-sensitive made of proteins, and other large molecules, where these
sunglasses: when you look at the sun they go dark (cf. off) molecules sense, transform, and output signals. Molecu-

* and when you turn away they go light (cf. on). Candidate lar computing has its origins in the early 1970's when bi-
three-port optical transistors center on two technologies: ological information processing models were first
a nonlinear Fabry-Perot interferometer and multiple developed. Since that time, rapid progress has been
quantum-well material, made in biosensors, protein engineering, recombinant

With respect to optical analog computers, here the DNA technology, polymer chemistry, and artificial mem-
base technology is the spatial light modulator. A spatial branes. This research has culminated in major research
light modulator, in general, modulates the light output as programs, such as the Japanese government's 8-year, $65
a function of the light intensity input. The device consists million project under the auspices of the Research and
of the spatial light modulator, the detector, and three Development Association for Future Electronic Devices.
beams: write, readout and output. The amplitude (or The building blocks of a molecular computer are pro-
phase) of the "readout" light beam is modulated as a func- teins and enzymes. A protein is a large molecule com-
tion of the intensity of a controlling "write" beam, and the prising smaller molecules, called amino acids, organized
reflected product of this two-dimensional information as a linear chain. A chain might typically contain 300
pattern is the "output" beam. amino acids, chosen from among 20 commonly occurring

The architecture of optical computers relates close- types. An enzyme is a protein molecule that supports the
ly to the properties of optical technology. Optical com- pattern recognition. An enzyme is responsible foi recog-
puters are naturally parallel and can support global nizinga"messenger" module (referred to asthe substrate)
communications from arrays of transmitters to arrays of and causing it to change to a "product" molecule. Each
receivers at the speed of light. Parallelism in optical com- enzyme recognizes a specific type of messenger molecule
puting means the ability to perform a large number of by its geometric shape, and transforms it (i.e., switches its
operations simultaneously but independently, such as btate) by making or breaking a precisely selected chemi-
switching all the optical logic gates in an entire two- cal bond.
dimensional array. The basis of this pattern recognition is the folding of

Consider the three major functional units of a com- protein chains. A protein assumes a shape when numer-
puter, namely, memory, proces.or, and input/output. In ous weak interactions among the amino acids in the linear
a classic von Neumann electronic computer the proces- chain cause it to fold into an elaborate three-dimensional
sor must acces- the memory (or input/output) sequen- shape. Clearly, the number of different protein shapes is
tially. This form of execution is "single-instruction-sin- potentially enormous. In addition, the recognization pro-
gle-data stream" (SISD). With an optical computer, in cess, involving the cnzyme matching with the messenger
contrast, the three units can access each other simulta- molecule is itself sensitive to interaction with other mole-
neously in parallel. This form of parallelism is "single-in- cules and local physicochemical conditions. This interac-
struction-multiple-data stream" (SIMD), as supported by tion is important, particularly for molecular computing.
traditional array processors. As shown in Figure 24, an because an enzyme can also be switched into a different
optical computer should be implementable as a large op- shape, thus allowing for memory and control at the mole-
tical gate array with the three units being indistinguish- cular level. A molecular architecture might comprise
able, and global communications being provided by a three layers of molecules performing input, processing,
separate unit such as a computer-generated hologram, and output. Input (i.e., receptor) molecules in one layer

can transform the input signals into "messenger" (i.e., the
Inierccnnecvios substrate) molecules released inside the tactilizing me-

dium. These sensory inputs might be light, temperature,
or pressure. Processing molecules (i.e., tactilizing
enzymes) interact with the messenger molecules, trans-
forming them and causing a reaction-diffusion pattern of
activity. Lastly, the output molecules (i.e., readout

Memory enzymes) read the local messenger molecules that result
'-.' .from the reaction, and generate the output signals from

the computer.
Inputs

Future Trends
I/0 Treleaven said that in the search for the "correct" par-

allel architecture for neurocomputers the desire for ver-
Figure 24. Possible optical computer architecture. satility (i.e., programmability) must be balanced against

both the hardware complexity and the computational
Molecular. Treleaven said that molecular compu- power. In Figure 14 (page 19), these trade-offs are

ters are intended to be information processing systems presented pictorially. For neurocomputers the potential
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complexity of PE's ranges from RAM cells to microcom- Korst said that recently many researchers have been
puters like the INMOS company's Transputer. The near- turning their attention to the possibilities of neural net-
neighbors of neurocomputers are the special-purpose works and neural computing for carrying out complex
hardware nets and cellular arrays. computational tasks such as combinatorial optimization

To date, neural network models and applications and learning. The characteristic features of neural net-
have typically been developed through simulations on works are distributed memory (reduction of communica-
conventional computers such as DEC VAX. Due to tions bottlenecks) and massive parallelism (fast
severe performance constraints, these software simula- computing). The model of the Boltzmann machine, in-
tions are being transferred to parallel computers such as troduced by Hinton and coworkers (Aarts and Korst,
the Intel iPSC Hypercube and INMOS Transputer-based 1987) belongs to the class of neural network models and
systems. The recent developments of neurocomputer is a typical representative of connectionist models. The
hardware components have been stimulated by these neu- model of the Boltzmann machine was originally de-
ral network software advances. These developments, as veloped to carry out learning tasks within the field of pat-
described above, subdivide into (1) special-purpose, tern recognition, according to Korst. He said that the
analog implementations of specific models, typically the model exhibits interesting learning capabilities such as
Hopfield model, and (2) more general-purpose neuro- memory association and (restricted) induction. Futher-
computers, such as the HNC ANZA and the TI NETSIM. more, it provides a computational model that is especially

With regard to the future, neurocomputers are be- suited for a massively parallel execution of the simulated
lieved to represent a fundamentally new pattern process- annealing algorithm. As mentioned above, Korst and his
ing domain of computation, complementary to the symbol group showed that the model can be used effectively with-
processing domain of traditional computers. This, Tre- in the field of combinatorial optimization, exploiting its
leaven and others believe, recommends the development massive parallelism.
of a general-purpose parallel architecture for neurocom- A Boltzmann machine consists of a network of simple
puters, whether analog or digital. computing elements. The computing elements are con-

According to Treleaven, over the next 20 years sidered as logic units having two discrete states, "on" or
neurocomputers can be expected to evolve through the "off'. The units are connected in some way. With each
following stages: (1) design of novel hardware compo- connection a connection strength is associated, repre-
nents; (2) production of electrical neurocomputers; (3) senting a local quantitative measure for the desirability
design of components for optical neurocomputers; (4) that the two connected units are both "on". A consensus
production of hybrid electro-optical neurocomputers: (5) function assigns to a configuration of the Boltzmann ma-
design of components for molecular neurocomputers; chine (i.e., a global state completely determined by the

and (6) production of optical neurocomputers. states of all individual units) a real number which is a
quantitative measure that indicates to what extent the

Combinatorial Optimization on a units have reached a consensus about their individual
states, subject to the desirabilities expressed by the con-

Boltzmann Machine nection strengths. The state of an individual unit is iter-

The problem of solving combinatorial optimization atively adjusted by a stochastic function of the states of
o mthe units it is connected to and the associated connectionproblems on a Boltzmann machine was discussed bv

J.H.M. Korst (Philips Research Laboratories. Eind strengths.
Korst presented details of the research carried out byhoven, the Netherlands). Korst showed that by choosing him and coworkers on the feasibility of solving combina-

a specific connection pattern and appropriate connection toial optimization problems on a Bohlzmann machine.

strengths many combinatorial optimization problems However, I will not report the details at this time as a book
could be mapped directly onto the structure of a bvKorstandAartsdescribestheirwork(AartsandKorst,
Boltzmann machine. Thus maximization of the consen-
sus in the Boltzmann machine is equivalent to finding an 1987). In summary, Korst said that the final solutions ob-

optimal solution of the corresponding optimization prob- tained by the Boltzmann machine algorithm are com-

lem. The approach used by Korst and his collaborator at parable to the final solutions of the simulated annealing

Philips (E.H.L. Aarts) was illustrated by Korst by the nu- algorithm. He said that for all three problems - the max

merical results obtained by applying the model of cut, the independent set, and the graph coloring prob-
lem-the Boltzmann machine performs excellently; i.e.,

Boltzmann machines to randomly generated instances of fast convergence to near-optimal results. The final solu-
the max cut, the independent set and the graph coloring tions obtained by the Boltzmann machine are comparable

problem. From the results obtained by Korst and Aarts

and coworkers, it was concluded that near-optimal solu- to the solutions obtained by the simulated annealing

tions can be obtained by using in an efficient way the char- problem. The precise choice of the connection strengths
is not critical. The estimated speedup of the Boltzmannacteristic features of a Botzmann machine, viz., massive machine is linear with the number of units. As an overall

parallelism and a distributed memory. conclusion, Korst stated that the Boltzmann machine can
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exploit its massive parallelism and distributed repre- Neurophysiologls Mathematicians Engineers
sentation efficiently in solving (or approximating) a wide Cognitive scientists Physicists Computer scientists
range of combinatorial optimization problems. He said N lf

that this result becomes more significant when the Natural 4 Ailificist
Boltzmann machines are directly put on silicon, where Neural modeling Formal models Artificial systems

each connection is hard-wired. In this way the annealing
process can be performed extremely fast using analog de-
vices which add up the incoming charge and perform the Figure 25. Poles of science and neural networks.
stochastic decision-making by using noise. The design of
these hard-wired networks has been the subject of study Neural Modeling
for some time. Recently, Alspector and Allen (1988) Neural modeling is the part of research investigating
presented a design of a VLSI chip with 5.10 gates, imple- the structural and functional organization of animal
mentinga Boltzmann machine consisting of approximate- brains from an experimental point of view, using anatomi-
ly 2000 units (this design is also suited for learning tasks). cal, electrophysiological, and behavioral evidence. As an
They estimate that their chip will run about a million times obsra iol science s an

faster than simulations on a VAX. Korst said that opti- observational science it is an essentially bottoms-up ap-

cal implementations of the toltzmann machine such as proach, it is concerned with establishing bridges between
high-level mental functions and neural activity. It oftenproposed by Ticknor and Barrett (1987) might even fur- cons d eured through om-

ther increase this factor by some orders of magnitude. consists of generating models, explored through com-
Korst said that his final conclusion is that the Boltzmann purer simulations, and incrementally modifying them tocome to a better fit with observed data.machines are promising as a means of solving (or approxi- Le Texier said that numerous centers are carrying out
mating) combinatorial optimization problems. Clearly, such research work. To name only a few:
however, more theoretical analysis and large-scale prac-
tical experience are needed to assess the real impact of R. Eckmiller, at the Department of Biocybernetics at

the oltzannmachne.the University of Dusseldorf, West Germany, whose
the Boltzmann machine. research interests include the neural control of eye and

Neural Networks: A European Perspective hand movements in primates, as well as the develop-
ment of neural networks for sensorimotor coordinate

The European perspective was addressed by J.Y. Le transform and motor program generation in intelligent
Texier (Division of Electronic Systems, Thomson-CSF, robots
Paris, France). He began his talk by saying that a formi- W. Singer, at the Max Planck Institute for Brain Re-
dable boom is now taking place in the US on the neuro- search, Frankfurt, West Germany, who is carrying out
computing theme: federal agencies and large and small research on the mammalian visual system and colla-
companies are launching their research programs, borates with W. Phillips from the Department of Psy-
universities are setting up multidisciplinary specialized chology and Computer Science, University of Stirling,
research centers and organizing special curriculae for UK
students. At the same time, Japan talks about sixth- A. Berthoz, at the CNRS laboratory of Sensory Neur-
generation computers and the ambitious "Human Fron- obiology in Paris. France, whose activities include in-
tier Science Program." Le Texier then posed the question tracellular studies of neural circuits controlling eye
of how is Europe prepared to resist such competition ini movements and modeling of visual motion perception.
this emerging new technology. He believes that there is (Berthoz and his group work in collaboration with A.
an extremely rich scientific potential in Europe for fun- Roucoux from the Laboratory of Neurophysiology,
damental research in the field. Catholic University of Louvain, Belgium)

Le Texier said that the future of Europe in this do-
main is rather a matter of research coordination across * J.0. Keefe, University College, London, UK, doing
disciplines and countries, and he presented a review of research on the hyppocampus, the part of the brain
national and community funding programs currently en- supposed to be responsible for orientation capabilities
couraging such coordinated fundamental research ef- in mammals

forts. If Europe is desirous, he said, of keeping up with e D. Masterbroak, Biophysics Department, Groningen
international competition, it is also necessary to hasten University, the Netherlands, who pursues an original
technological transfers to industry; an ESPRIT-I propo- line of research by studying the fly (Calliphora cry-
sal for a 5-year program gathering several major Euro- throcephala) and particularly, its visual system.
pean companies was also presented.

The survey of European research resources was or-
ganized by Le Texier into three parts, each one around This part of Le Texier's presentation covered con-
an area of research corresponding to a certain viewpoint tributions of researchers with a background in theoreti-
in the field and a particular scientific background, as cal sciences-mathematics, theoretical physics,
shown in Figure 25. theoretical computer science, etc. They use formal the-
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oretical tools (statistical mechanics, automata theory, in- networks - Y. Le Cun and F. Fogelman (University of
formation theory, etc.) to study, in a top-down approach, Paris V, France) discovered the backpropagation algo-
the information processing capabilities of networks of rithm (similar to Rummelhart's), now widely known, stu-
elementary cells or processors. died, and applied in experiments all over the world.

The idea of modeling neurons by threshold automa-
ta can be traced back to work done by McCulloch and Artificial Neural Systems
Pitts in 1942, according to Le Texier. A renewed interest This part of the research represents the effort to
in this area is due to the work in 1982 of the physicist, Hop- bring results in the preceding areas to the engineering
field, on associative memories, suggesting the use of net- realm. Such a task, requiring computer scientists' and en-
works of such automata to retrieve partially altered gineers' contributions, expected to increase in the com-
information. Le Texier said that the model had been ing years, is two-fold: it must provide tools to support the
derived by analogy with research on physical, disordered research, particularly software simulation environments
systems (spin-glass model). running on parallel architecture machines, and, on a

A large number of theoretical physicists currently longer term, offer solutions to the integration of the mod-
work on neural network models. Among them are: els on physical devices- it must validate the models, and
" T. Kohonen (Finland) who has been working on asso- verify their applicability by testing them on real-world ap-

ciative memories and later set a mathematical frame- plications.
work on the theory of self-organization, based on Simulation of neural networks is extremely com-
neurophysiological evidence puter-intensive. One can either use supercomputers,

" C. Von der Marisburg, who also works on models of general-purpose parallel hardware, dedicated massively
organization of the brain, with application to the visual parallel machines, or special-purpose integrated circuits.
system (he currently works with E. Bienenstock on a Le Texicr said that D.J. Wallace and his group at the
model, radically original [according to Lc Texier] pro- University of Edinburgh, UK. in collaboration with D.
viding an elegant solution to invariant pattern recogni- Bounds at RSRE, Malvern, UK, make use of various
tion) hardware supports: the Meiko computing surface and the

* P.Peretto and J.J. Niez of the CEA-Nuclear Energy I.C.L. Distributed Array Processor. L.S. Smith at Stir-
- ling University, UK, also implements neural nets on

Commission, Grenoble, France, who have placed the
description of associative memories in a probabilistic Transputer-based machines. F. Roberts at IMAG uses

framework (Peretto also designed a hybrid analog- an Intel hypercube and works on the design of a ncuro-

digital machine with impressive performance, Le Tex- computer in collaboration with other research centers in

ier said) Grenoble, including Herault's group at INPG, which has
already developed a prototype machine for signal pro-

* G. Dreyfus and L. Personnaz (ESPCI, Paris, France), cessing, according to Le Texier. At Texas Instruments,
who work on associative memories, on a Hopfield net- Bradford, UK, S. Garth also works on a low-cost, dedi-
work, with particular learning algorithms (projection cated parallel machine, based on modular assembling of
rule) elementary boards. P. Trelcaven, University College.

SD.J. Wallace (UK). E. Caianello (Italy), G. Toulouse London, works on the design of a massively parallel archi-
(France), and J. Hertz (Denmark) - all theoretical tecture.
physicists, who have had considerable influence on the Integration experiments are also being conducted: A.
development of connectionist research in their own Murray, University of Edinburgh, UK, has designed a
countries. chip for the Hopfield model; M. Weinfeld, Ecole Poly-

In parallel with the physicists, mathematicians and technique, Paris, France, implements the learning algo-
rithm developed by G. Dreyfus and L. Personaz on atheoretical computer scientists have been studying the dy- chp

namic properties and computational abilities of automa- chip.
ta networks. Von Neumann initiated such research by Among application studies, the most recent con-
looking for a model that would be valid for both living sys- tributions include: R. Durbin (Oxford University, UK)temsandmachnes wor oncelularautmataanddis and D.J. Willshaw (University of Edinburgh, UK), in-tem s and m achines: W o rk on cellular auto m ata and d is- s i e y V n d r M r s u g s.w r ,h v e e o e hceeiteration models is an offspring of these early spired by Von der Marlsburg's work, have developed the
crete ielastic net algorithm to solve the classical traveling sales-
studies. An important center of research is in Grenoble,France, at IMAG with contributions from F. and Y. man problem; I. Herault (Grenoble, France) has de-
Robert, M. Tchuente, c. Demongeot, and G.Y. Vichniac. veloped an algorithm performing signal separation on aRobet, . ThueteJ. emoneot an G.. Vchnac. mixed signal of independent source.
Parallel processing capabilities of systolic arrays of an in-
tegrated processor, made possible by VLSI technology, Funding of European Research
renewed interest in the field, now intensively studied allover Europe. Up to now, according to Le Texier, European re-

Le Texier said that on another line of research- search has been funded by national scientific research inLe Txie sad tat n aothe lie o reearh - the various domains mentioned above. Le Texier then
looking at supervised learning capabilities of automata
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sketched recent coordinated programs such as the West distinct layers: applications, dedicated high-level lan-
German government research program, the BRAIN in- guage and simulation tools, parallel architecture support,
itiative from the CEE, and a potential ESPRIT-I1 project and VLSI and WSI integration.
for industrial research and development. The idea is to demonstrate the utility of these tech-

Germany. The government of West Germany has in- niques by developing a range of applications, mainly with
itiated major funding of approximately $6.1 million per application to the field of sensory-data processing (image
year over a 10-year period starting in January, 1988. This processing, speech processing, robot control, etc.). They
concerted effort set up and funded by the Ministry of Re- will provide the means for performance evaluation and
search and Industry (BFMT) concerns eight research refinements at all levels of the project.
groups working on "Information Processing in Neural As support tools for these studies, a connectionist
Architectures." Reinforcing the federal effort, the state software environment will be developed, including a high-
of North Westphalia supports a program of research in level object-oriented dedicatcd language and a simula-
neuro-informatics by establishing four endowed, tenured tion and testing environment. These tools will be made
professorships, two at Diisseldorf University (strong available on existing European parallel computers and on
background in neurophysiology) and two at Bochum workstations (Supernode, DOOM), extablishing a de
(strong engineering background). The aim of these pro- facto standard for European software interchange, which
grams is to study the transfer of brain functions to com- would be highly beneficial to the European research com-
puter science, with the specific goal of developing munity, according to Le Texier. As a major undertaking,
intelligent robots, working by federation of special-pur- a massively parallel machine for emulation of connection-
pose integrated computers. ist models, a neurocomputer will be designed to provide

The BRAIN Initiative. As an initiative from DG XII the needed European hardware platform for the domain.
of the CEE, a stimulation action, named BRAIN (Basic In parallel, VLSI and WSI integration of specific models
Research in Adaptive Intelligence), was launched in will be explored as a basis for future application-dedi-
1987. Its purpose is to support research collaboration cated architectures.
aimed at a better understanding of how the brain works, According to Le Texier, integration of results stem-
and the design of machines capable of emulating some of ming from neural network research is of critical import-
its task-oriented problem-solving capacity. ance for European information technology since those

A committee of experts has chosen six projects, for a models appear to offer both a framework for taking ad-
level of funding close to 1 million ECU (about $1.2 mil- vantage of hardware improvements, and a complement to
lion). The program is expected to show that with limited symbolic Artificial Intelligence by providing real-time
resource a great deal can be achieved by sharing exper- sensorv-processing capabilities. In order to keep up Eu-
tise at a European level: in total, 28 labs and I(X) re- rope's level of competence in this emerging field, it is es-
searchers are involved. The list of accepted projects is as sential to organize European research, Le Texier said.
follows: and to encourage initiatives for creation of dedicated re-
* Connectionist models for artificial intelligence (Al) search centers, analogous to the Computer and Neural

System Center at Caltech or the Center for Adaptive Sys-• Learning in automata networks: towards a neurocom-puaer tems at Boston University. Le Texier said that there
should also be an increased communication between aca-

* Neural networks for data processing demic and industrial researchers in order to enhance co-

" Distributed matrix memories herence and coordination of the efforts and to prepare
the industrialization of results.

" Spatial and temporal transformations

" Graph-matching approaches of invariant perception. Neurocomputing Applications: A United
An ESPRIT-l Proposal. The BRAIN research ef- States Perspective

fort is a stimulation action, aimed at academic research
centers. However, since the field is evolving towards a The US perspective was discussed by R. Hecht-Niel-
more industrial dimension, another level of community son (Hecht-Nielson Neurocomputer Corporation, San
funding was necessary to keep Europe on a par with Diego, California). He first presented an overview of the
Japanese and American competition. subject, then said that since the invention of computing

Although ESPRIT II is only a proposal, partners 45 years ago, there has been a strong desire to achieve in-
from eight different European countries involving large formation processing capabilities that are at least quali-
industrial companies (Thomson, Philips, Siemens) are tatively similar to those possessed by animals. This desire
now proposing to the CEE an ESPRIT-I project on is now beginning to be realized in the new field of neuro-
neurocomputing. This 5-year project is conceived as an computing. Neurocomputing is the engineering disci-
industrial R&D approach to connectionism, covering the pline concerned with nonprogramed, adaptive
spectrum of related technical issues. It is organized in information processing systems called neural networks

that develop transformation in response to the informa-
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tion environment to which they are exposed. This new and that this aspect of the network's operation will be fully
technolog3 has been pioneered by scientists and engin- understandable, according to Hecht-Nielson. However,
eers around the world and has an unusually international on a deeper level, the network is actually using clever in-
flavor. He said that neurocomputing would still not have formation-processing tricks internally (such as the devel-
emerged from the academic backwater in which it lan- opment of features and internal representations that have
guished for 20 years were it not for key contributions by particularly apt form, or the development of subtransfor-
researchers in Europe and Japan. mations within the neural network structure that have a

Neurocomputing is a fundamentally new and differ- particularly simple structure) that currently available in-
ent information processing paradigm. It is the first alter- formation-processing concepts cannot be used for find-
native to the programing paradigm that has dominated ing or understanding the operation of the neural network.
computing for the last 45 years, according to Hecht-Niel- The"San Diego Interpretation of Ncurocomputing" holds
son. Neurocomputing and programed computing are that before such detailed understandings can be
fundamentally different approaches to information pro- achieved, new theoretical tools specifically designed for
cessing. Neurocomputing is based upon transforma- the understanding of neurocomputing structures will
tions, whereas programed computing is based on have to be developed. The emerging debate between pro-
algorithms and procedures. What is being discovered, ponents of these two interpretations, according to Hecht-
according to Hecht-Nielson, is that these two types of in- Nielson, is reminiscent of the heated intellectual battles
formation processing, while conceptually incompatible, triggered by the espousal of the Copenhagen interpreta-
are highly complementary. He said that the emergence tion of quantum mechanics 60 years ago.
of neurocomputing as an intellectual pursuit has raised a
number of fundamental questions. Among the most sig- The Technical State of Neurocomputing
nificant of these are the questions of how to define pre- Hecht-Nielson said that the recent upsurge in inter-
cisely what a neural network is, and how to assess the est in neurocomputing has increased the rate of technical
philosophical significance of neural networks. Answers refinement of the subject. He said that great technical
to these questions are now beginning to emerge. progress has been made within the last couple of years.

Neural Network Architecture. In neurocomputing
The Philosophical Significance of Neurocomputing the word "architecture" is reserved for the mathematical

Hecht-Nielson said that neurocomputing is now rec- description of a neural network functional form. Archi-
ognized to be a new approach to information processing tecture is an entirely separate issue from implementa-
that differs at the most fundamental level from the pro- tion-the physical realization of a neural nctwork.
gramed computing paradigm that has been in use for the Fundamentally new neural network architectures used to
past 40 years. Beyond this identification of neurocomput- appear infrequently (at 2- to 3-year intervals). according
ing as being a fundamentally different information pro- to Hecht-Nielson. This pace has accelerated consider-
cessing paradigm from programed computing, the ably. Having now gone through the process of inventing.
question of the degree to which these paradigms differ is developing, and promulgating more than 10 important
now becoming quite controversial. One school of neural network architectures, the neurocomputing com-
thought, he said, holds that neurocomputing, while cer- munity understands, he said, that this is a process that
tainlv based on adaptive principles, is at its heart, still naturally takes a considerable amount of time. The three
based on the same arithmetic and logical foundations as or four important new neural network architecturc that
ordinary, programed computing. This interpretation have been discovered within the last year will require at
would suggest that the two paradigms are really not very least I to 2 years of additional development work before
different from one another. However, a second, more they are fit for application to real-world problems. He
radical point of view has emerged within the last couple said that most neural network architects find it counter-
of years. This interpretation suggests that not only are the productive to release their progeny before extensive the-
two computing paradigms totally different from one an- oretical and experimental exploration of the newv
other in both conceptual and operational terms, but fur- network's properties can be carried out. This makes it
ther, that the conceptual machinery developed to highly advantageous for individuals and organizations
understand and explain algorithmic computing will be in- within the neurocomputing application community to
adequate to understand the tricks that neural networks have close contact with the sources of architectural inno-
develop during training that allow them to carry out use- vation. Given the startling increases in capability and per-
ful information-processing operations. For example, a formance that have been realized in recent neural
neural network may be used to develop a highly accurate network architectural advances, this close contact can
approximation to a mathematical function (the accuracy make the difference between leading-edge capability and
being measured externallyin a least-means squared-error obsolescence. This is why, according to Hecht-Nielson,
sense). Existing neural network theory may very well many neurocomputing companies have aligned them-
guarantee that the network will adaptively modify itself to selves with one or more of the leading groups of neural
achieve a high accuracy approximation to the function, network architects.
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Neurocomputers. Hecht-Nielson said that it has a number of start-up companies and a few established
now been thoroughly demonstrated that one of the major large corporations. This embryonic industry has the
advantages of neurocomputing is the ability to automati- potential for large growth over the next few years. Estab-
cally "parallelize" the implementation of neural network fished neurocomputing companies range from those pro-
architectures in hardware. This can be accomplished viding a full spectrum of hardware, software,
both by the simplistic approach of implementing each in- neurosoftware and customer support services to those
dividual processing element of a neural network in dedi- positioned to exploit niche markets.
cated hardware, or by the more sophisticated approaches Hardware Products. Hecht-Nielson said that a small
in which each item of connection hardware or each item group of neurocomputing companies now offer hardware
of processing hardware is shared across multiple connec- products specifically for use in implementing neural net-
tions or processing elements. Such virtual neurocom- works at high speed. These products range from board-
puter designs can be far more cost effective than the fully level offerings from HNC and SAIC to the large TRW
implemented approach, according to Hecht-Nielson (al- MARK III machine. This market is expected to expand
though it is expected that for some future applications, rapidly and remain strong as these products and their
the fully implemented approach is more appropriate), derivatives begin to appear in end-use applications, ac-

In recent years, a large number of experimental neu- cording to Hecht-Nielson. Special-purpose neurocom-
rocomputers have been built. Examples include large puters designed for specific applications are also
electronic neurocomputers such as the DARPA/TRW expected to appear within the next few years.
MARK IV (250,000 processing elements, 5 million con- Software Products. Hecht-Nielson said that a num-
nections per second during training), the Hughes Malibu ber of companies have announced software products that
Research Center all-optical neurocomputer (16,000 pro- allow existing computers to be used for implementing
cessine elements,260millionconnections-non-adaptive), neural networks. Almost all of these products are
and the Naval Research Laboratory electro-optic neuro- oriented toward the educational market.
computer (65,000 processing elements, 4 billion connec- Neurosoftware Products. All computer manufac-
tions). Neurocomputers on a chip have also been turersofferacollectionofstandardneuralnetworkarchi-
constructed, including the marvelous retina and choclea tectures in neurosoftware form for the products. With
network chips of C. Mead at Caltech, according to the advent of AXON, these offerings will move from their
Hecht-Nielson. Commercial general-purpose neuro- current object code form to source code form, according
computers have also advanced significantly: from the to Hecht-Nielson. This will allow users to modify and cus-
world's first commercial offering (the TRW," MARK III, tomize neural network architectures for their particular
introduced in April 1986; 8,000 processing elements, applications.
400,000 connections, 350,000 connections per second Neurocomputing Applications. Hecht-Nielson said
with training; $70,000 list price) to Hecht-Nielson Cor- that application areas for neurocomputing seem to fall
poration's newly announced ANZA Plus neurocomputer into four categories: pattern recognition, control, data
(1 million processing elements, 1 million connections, 1.5 analysis, and fuzzy knowledge processing. Except for
million connections per second during training; $14,900 small neural networks used for adaptive nulling of phase
list price). array radar antennas and adaptive equalization of telc-

Neurosoftware Languages. Hecht-Nielson said that communications transmission lines, there are no neural
in programed computing, one of the most important fun- network systems currently in everyday use. However, a
damental innovations was the development of compilers large number of organizations within the industrial, com-
and higher order programing languages that allow an al- mercial, and defense sectors are now pursuing significant
gorithm to be readily expressed in a machine-executable applications. While most of these efforts have only re-
form. Similarly, in neurocomputing, neurosoftware lan- cently begun, a few were started over a year ago, and some
guagcs for describing arbitrary neural networks in a ma- of them have now matured to the point where they are en-
chinc-implementable form have now been developed. tering field testing. Some of these are expected to enter
Although the first-generation neurosoftware languages service within the next I to 2 years.
were only suitable for use by researchers, according to Commercial Applications. Commercial applica-
Hecht-Nielson, a second-generation language (HNC's tions of neurocomputing will span an enormous range, ac-
AXON) that is specifically designed to support commer- cording to Hecht-Nielson. They include loan application
cial application development as well as research, has now scoring, airline fare optimization, physical security sys-
been developed. He said that AXON will be proposed as tems, gas and petroleum exploration, movie special ef-
an industry standard. fects, and medical instrumentation. Other, more

speculative applications, are also being developed, but
The Neurocomputing Industry these are not expected to mature within the next 2 years.

Industrial Applications. A number of significant in-
Hecht-Nielson said that recent years have seen the dustrial applications of neurocomputing are currently

introduction of commercial neurocomputing products by under active development, according to Hecht-Nielson.
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These include manufacturing product inspection, pro- Japan and Europe. In Japan, HNC is represented by
cess control, powerplant fault detection, computer-aided Sumisho Electronics, a subsidiary of the Sumitomo Cor-
manufacturing, product warrantee history analysis, and poration. Other leading US neurocomputing firms in-
computer security. clude SAIC (San Diego, California), TRW (San Diego,

Military Applications. Military applications of neu- California), Nestor Inc. (Providence, Rhode Island),
rocomputing that are currently being developed include Neuronic (Cambridge, Massachusetts), and Synaptics
radar and sonar target detection and recognition, (San Jose, California).These companies provide a wide
multisensor fusion, steering and pointing control, image variety of hardware, software, neurosoftware, and neural
object detection and recognition, and application to elec- network chip technologies. Many other smaller com-
tronic warfare, among others. The current study at the panies such as BehavHeuristics (Silver Springs, Mary-
US Defense Advanced Research Projects Agency land) and Netrologic (San Diego, California) have been
(DARPA) is expected to identify additional areas of formed to pursue more specialized markets. For
potential payoff. example, BehavHeuristics has developed a neural net-

Early Indications of Success. According to Hecht- work-based system for optimizing airline fare decisions,
Nielson, between five and ten neurocomputing applica- and Netrologic offers neurocomputing applications
tions have now entered the field testing stage after R&D services.
demonstrating promising initial experimental results. US Government. Hecht-Nielson said that the re-
Some of these may successfully cross the remaining in- naissance of neurocomputing was at least partly triggered
stitutional and operational barriers and become deployed by the resumption of funding of research in this area by I.
applications within the next 1 to 2 years. Hecht-Nielson Skurnick of DARPA. This initial activity, beginning in
said that the fact that this many applications have gotten the early 1980's, has now blossomed into a formidable en-
so far in such a short period of time is encouraging. It can semble of research and development activities being
be anticipated that even a small number of significant suc- funded by practically every agency of the Department of
cesses will lead to an explosive expansion in the volume Defense, as well as significant support for basic research
of activity in neurocomputing. in neurocomputing by the National Science Foundation.

Universities. As leaders in scientific and technologi- DARPA is currently conducting a major 6-month study
cal developments, many universities in the US have now (being managed by MIT Lincoln Laboratories) of the ap-
started research and teaching programs in neurocomput- plications of neurocomputing to defense problems. This
ing. Four universities (Boston University, Caltech, study is expected to yield recommendations for increased
University of Southern California, and Stetson University funding in a number of application areas. Hecht-Nielson
of Florida) have developed formal education programs in said that all major US defense contractors now have neu-
neurocomputing. The University of California at San rocomputing activities underway. One such contractor is
Diego offers neurocomputing courses in four different said to have over a hundred people working full time on
departments. Many other universities offer neurocom- neurocomputing applications research. Several compel-
puting courses in at least one department. According to lingdemonstrations of the efficacyof neurocomputing for
Hecht-Nielson, the volume of academic research in neu- solving defense problems in such areas as radar target
rocomputing produced by American universities has in- classification, sonar target classification, object detec-
creased markedly over the last 2 years. Almost all of the tion, and identification in images and electronic warfare
traditional journals in signal processing, image process- have already been developed, according to Hecht-Niel-
ing, pattern recognition, control, and information theory son.
now regularly feature papers in neurocomputing.

Neurocomputing Industry. Hecht-Nielson said that
new technologies always spawn new industries. Neuro- Conclusion
computing is no exception. Over 40 new neurocomput-
ing start-up companies have been formed within the US It is evident from the presentations at this conference
during the last 18 months. The largest and most vertically that there is tremendous enthusiasm not only in the US
integrated company in the industry is HNC (Hecht-Niel- and Japan but also in Europe in the area of neurocom-
son's company), which offers a full range of neurocom- puting. It is a technology that is not only intellectually
puting hardware, software, and neurosoftware, as well as stimulating but is also potentially valuable. The concen-
a complete range of services including training, contract sus at this meeting was that successful applications can be
research and development, original equipment manufac- expected within the next 2 or 3 years. It also seems like-
turer component development and production, and joint ly that the field will spawn a new academic discipline as
product development. HNC, a company with 50 em- well as new manufacturing and service industries. With
ployees located in San Diego, California and Washington, neurocomputing now on the scene, the next few years may
D.C., is the overwhelming sales leader in both the US and likely turn out to be a period of revolutionary expansion
around the world. Hecht-Nielson said that HNC is par- of our information processing capabilities.
ticularly proud of its large international customer base in
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